Analysis of Bacillus subtilis tag gene expression using transcriptional fusions. 1994

C Mauël, and M Young, and A Monsutti-Grecescu, and S A Marriott, and D Karamata
Institut de Génétique et Biologie Microbiennes, Lausanne, Switzerland.

Five of the genes known to encode the synthesis of poly(glycerol phosphate), the major teichoic acid of Bacillus subtilis 168, are organized in two divergently transcribed operons (a divergon), denoted tagAB and tagDEF. To monitor their expression, the 399 bp intergenic region separating the first structural genes of these operons was fused, in both orientations, to a lacZ reporter gene, allowing measurement of promoter activity under specific physiological conditions. Under all experimental conditions, tagA and tagD appeared coordinately expressed, the level of tagD being always higher than that of tagA. No influence of the chromosomal context was observed. Phosphate limitation was accompanied by reduced tag gene expression. Following the onset of sporulation, expression of tag genes diminished rapidly and was essentially abolished by stage II. During germination, the activity of tag genes was detectable before the rise in culture turbidity associated with spore outgrowth. In contrast to tagC (dinC), the expression of which is DNA-damage-inducible, the induction of SOS functions had no effect on tagA and tagD gene expression. The biological significance of these results is discussed.

UI MeSH Term Description Entries
D007763 Lac Operon The genetic unit consisting of three structural genes, an operator and a regulatory gene. The regulatory gene controls the synthesis of the three structural genes: BETA-GALACTOSIDASE and beta-galactoside permease (involved with the metabolism of lactose), and beta-thiogalactoside acetyltransferase. Lac Gene,LacZ Genes,Lactose Operon,Gene, Lac,Gene, LacZ,Genes, Lac,Genes, LacZ,Lac Genes,Lac Operons,LacZ Gene,Lactose Operons,Operon, Lac,Operon, Lactose,Operons, Lac,Operons, Lactose
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D005994 Glycerophosphates Any salt or ester of glycerophosphoric acid. Glycerolphosphate,Glycerophosphate,Calcium Glycerophosphate,Glycerolphosphates,Glycerophosphate, Calcium
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D013014 SOS Response, Genetics An error-prone mechanism or set of functions for repairing damaged microbial DNA. SOS functions (a concept reputedly derived from the SOS of the international distress signal) are involved in DNA repair and mutagenesis, in cell division inhibition, in recovery of normal physiological conditions after DNA repair, and possibly in cell death when DNA damage is extensive. SOS Response (Genetics),SOS Box,SOS Function,SOS Induction,SOS Region,SOS Repair,SOS Response,SOS System,Box, SOS,Function, SOS,Functions, SOS,Genetics SOS Response,Genetics SOS Responses,Induction, SOS,Inductions, SOS,Region, SOS,Regions, SOS,Repair, SOS,Repairs, SOS,Response, Genetics SOS,Response, SOS,Response, SOS (Genetics),Responses, Genetics SOS,Responses, SOS,Responses, SOS (Genetics),SOS Functions,SOS Inductions,SOS Regions,SOS Repairs,SOS Responses,SOS Responses (Genetics),SOS Responses, Genetics,SOS Systems,System, SOS,Systems, SOS
D013171 Spores, Bacterial Heat and stain resistant, metabolically inactive bodies formed within the vegetative cells of bacteria of the genera Bacillus and Clostridium. Bacterial Spores,Bacterial Spore,Spore, Bacterial

Related Publications

C Mauël, and M Young, and A Monsutti-Grecescu, and S A Marriott, and D Karamata
June 2010, Microbiology (Reading, England),
C Mauël, and M Young, and A Monsutti-Grecescu, and S A Marriott, and D Karamata
November 1986, Journal of bacteriology,
C Mauël, and M Young, and A Monsutti-Grecescu, and S A Marriott, and D Karamata
January 1986, Proceedings of the National Academy of Sciences of the United States of America,
C Mauël, and M Young, and A Monsutti-Grecescu, and S A Marriott, and D Karamata
March 1986, Journal of bacteriology,
C Mauël, and M Young, and A Monsutti-Grecescu, and S A Marriott, and D Karamata
December 1984, Gene,
C Mauël, and M Young, and A Monsutti-Grecescu, and S A Marriott, and D Karamata
January 1988, Journal of bacteriology,
C Mauël, and M Young, and A Monsutti-Grecescu, and S A Marriott, and D Karamata
March 1986, Journal of bacteriology,
C Mauël, and M Young, and A Monsutti-Grecescu, and S A Marriott, and D Karamata
November 1986, Journal of bacteriology,
C Mauël, and M Young, and A Monsutti-Grecescu, and S A Marriott, and D Karamata
June 1994, Journal of bacteriology,
C Mauël, and M Young, and A Monsutti-Grecescu, and S A Marriott, and D Karamata
January 1992, Biotechnology (Reading, Mass.),
Copied contents to your clipboard!