Muscarinic modulation of intrinsic burst firing in rat hippocampal neurons. 1994

R Azouz, and M S Jensen, and Y Yaari
Department of Physiology, Hebrew University-Hadassah School of Medicine, Jerusalem, Israel.

Intracellular recordings in rat hippocampal slices were used to examine how exogenous and endogenous cholinergic agonists modulate the firing pattern of intrinsically burst-firing pyramidal cells. About 24% of CA1 pyramidal cells generated all-or-none, high-frequency bursts of fast action potentials in response to intracellular injection of long positive current pulses. Application of carbachol (5 microM) converted burst firing in these neurons into regular trains of independent spikes. Acetylcholine (5 microM) exerted a similar effect, provided acetylcholine esterase activity was blocked with neostigmine (2 microM). Atropine (1 microM) reversed this cholinergic effect, indicating its mediation by muscarinic receptors. Cholinergic agonists also caused mild neuronal depolarization but the block of intrinsic burst firing was independent of this effect. Repetitive stimulation of cholinergic fibres in the presence of neostigmine (2 microM) evoked a slow cholinergic excitatory postsynaptic potential (EPSP) lasting about a minute. During the slow EPSP, burst firing could not be evoked by depolarizing pulses and the neurons fired in regular mode. These effects were prevented by pretreatment with atropine (1 microM). Exogenously applied cholinergic agonists and endogenously released acetylcholine also reduced spike frequency accommodation and suppressed the long-duration afterhyperpolarization in burst-firing pyramidal cells in an atropine-sensitive manner. A membrane-permeable cAMP analogue (8-bromo-cAMP; 1 microM) also reduced frequency accommodation and blocked the long-duration afterhyperpolarization, but did not affect intrinsic burst firing at all. Taken together, the data show that muscarinic receptor stimulation transforms the stereotyped, phasic response of burst-firing neurons into stimulus-graded, tonic discharge.

UI MeSH Term Description Entries
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009388 Neostigmine A cholinesterase inhibitor used in the treatment of myasthenia gravis and to reverse the effects of muscle relaxants such as gallamine and tubocurarine. Neostigmine, unlike PHYSOSTIGMINE, does not cross the blood-brain barrier. Synstigmin,Neostigmine Bromide,Neostigmine Methylsulfate,Polstigmine,Proserine,Prostigmin,Prostigmine,Prozerin,Syntostigmine,Bromide, Neostigmine,Methylsulfate, Neostigmine
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002799 Cholinergic Fibers Nerve fibers liberating acetylcholine at the synapse after an impulse. Cholinergic Fiber,Fiber, Cholinergic,Fibers, Cholinergic
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001285 Atropine An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. AtroPen,Atropin Augenöl,Atropine Sulfate,Atropine Sulfate Anhydrous,Atropinol,Anhydrous, Atropine Sulfate,Augenöl, Atropin,Sulfate Anhydrous, Atropine,Sulfate, Atropine

Related Publications

R Azouz, and M S Jensen, and Y Yaari
December 1978, Brain research,
R Azouz, and M S Jensen, and Y Yaari
April 1998, Journal of neurophysiology,
R Azouz, and M S Jensen, and Y Yaari
January 2001, Journal of neurophysiology,
R Azouz, and M S Jensen, and Y Yaari
April 2021, Neuroscience letters,
R Azouz, and M S Jensen, and Y Yaari
July 1999, The Journal of physiology,
R Azouz, and M S Jensen, and Y Yaari
September 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R Azouz, and M S Jensen, and Y Yaari
April 2005, Sheng li ke xue jin zhan [Progress in physiology],
R Azouz, and M S Jensen, and Y Yaari
July 2012, Human molecular genetics,
R Azouz, and M S Jensen, and Y Yaari
January 2005, Brain research,
Copied contents to your clipboard!