EGF triggers neuronal differentiation of PC12 cells that overexpress the EGF receptor. 1994

S Traverse, and K Seedorf, and H Paterson, and C J Marshall, and P Cohen, and A Ullrich
Department of Biochemistry, University of Dundee, UK.

BACKGROUND Mitogen-activated protein (MAP) kinase is the central component of a signal transduction pathway that is activated by growth factors interacting with receptors that have protein tyrosine kinase activity. The stimulation of PC12 phaeochromocytoma cells with nerve growth factor leads to the sustained activation and nuclear translocation of the p42 and p44 isoforms of MAP kinase and induces the differentiation of these chromaffin cells to a sympathetic-neuron-like phenotype. In contrast, stimulation with epidermal growth factor induces a transient activation of p42 and p44 MAP kinases without pronounced nuclear translocation and does not trigger cell differentiation. We have examined whether the differential activation of MAP kinases forms the basis of the differential response of the cells to the two factors. RESULTS By overexpressing either wild-type or mutant receptors for epidermal growth factor in PC12 cells, we found that p42 and p44 MAP kinase activity remains elevated for longer in cells that overexpress receptors than in untransfected cells. Epidermal growth factor promotes both a striking nuclear translocation of p42 MAP kinase and the differentiation of the overexpressing cells. CONCLUSIONS Our results strongly suggest that the distinct effects of nerve growth factor and epidermal growth factor on PC12 cell differentiation can be explained by differences in the extent and duration of activation of p42 and p44 MAP kinases in response to the two factors, without invoking a signal transduction pathway specific to nerve growth factor.

UI MeSH Term Description Entries
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

S Traverse, and K Seedorf, and H Paterson, and C J Marshall, and P Cohen, and A Ullrich
May 1992, Molecular biology of the cell,
S Traverse, and K Seedorf, and H Paterson, and C J Marshall, and P Cohen, and A Ullrich
August 1994, Current biology : CB,
S Traverse, and K Seedorf, and H Paterson, and C J Marshall, and P Cohen, and A Ullrich
February 1987, Biochemical and biophysical research communications,
S Traverse, and K Seedorf, and H Paterson, and C J Marshall, and P Cohen, and A Ullrich
July 2004, Biochemistry. Biokhimiia,
S Traverse, and K Seedorf, and H Paterson, and C J Marshall, and P Cohen, and A Ullrich
February 1996, Journal of neuroscience research,
S Traverse, and K Seedorf, and H Paterson, and C J Marshall, and P Cohen, and A Ullrich
July 2006, Neurotoxicology,
S Traverse, and K Seedorf, and H Paterson, and C J Marshall, and P Cohen, and A Ullrich
September 2021, Neural regeneration research,
S Traverse, and K Seedorf, and H Paterson, and C J Marshall, and P Cohen, and A Ullrich
October 2005, Trends in endocrinology and metabolism: TEM,
S Traverse, and K Seedorf, and H Paterson, and C J Marshall, and P Cohen, and A Ullrich
January 2017, Frontiers in cellular neuroscience,
S Traverse, and K Seedorf, and H Paterson, and C J Marshall, and P Cohen, and A Ullrich
October 2000, Human molecular genetics,
Copied contents to your clipboard!