Corticosteroid receptor-dependent modulation of calcium currents in rat hippocampal CA1 neurons. 1994

H Karst, and W J Wadman, and M Joëls
Department of Experimental Zoology, University of Amsterdam, The Netherlands.

Pyramidal CA1 neurons in the rat hippocampus contain mineralocorticoid (MRs) and glucocorticoid receptors (GRs) for corticosterone, which, in activated form, act as transcription factors of the genome. The relative MR and GR occupation changes throughout the day, with predominant MR occupation under rest in the morning and additional GR occupation in the evening and after stress. We examined the effect of MR and GR activation on Ca currents in hippocampal slices from adrenalectomized (ADX) rats under whole-cell voltage-clamp conditions. In slices from ADX rats, where MRs and GRs are unoccupied, Ca currents (particularly in the low-voltage range) were larger than in neurons from the sham-operated controls; these effects became apparent with a delay of > or = 3 days after ADX. Selective occupation of MRs in tissue from ADX rats greatly (by 70%) and persistently (up to 3 h) reduced transient but also sustained Ca conductances. Voltage dependency and kinetic properties of the currents were not affected. Occupation of GRs as well as MRs by corticosterone (30 nM) resulted in relatively large Ca currents, comparable to those recorded in tissue from mildly stressed sham-operated control animals. Interestingly, exclusive occupation of GRs with 30 nM RU 28362 was not sufficient to induce large Ca currents. The data suggest that the changes in MR and GR occupation throughout the day, related to circadian and stress-induced corticosterone release, are linked to marked alterations in Ca currents, with small Ca currents in the morning and large currents in the evening or after stress.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D011987 Receptors, Steroid Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes. Corticosteroid Receptors,Receptors, Corticosteroid,Steroid Receptors,Corticosteroid Receptor,Receptors, Steroids,Steroid Receptor,Receptor, Corticosteroid,Receptor, Steroid,Steroids Receptors
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000305 Adrenal Cortex Hormones HORMONES produced by the ADRENAL CORTEX, including both steroid and peptide hormones. The major hormones produced are HYDROCORTISONE and ALDOSTERONE. Adrenal Cortex Hormone,Corticoid,Corticoids,Corticosteroid,Corticosteroids,Cortex Hormone, Adrenal,Hormone, Adrenal Cortex,Hormones, Adrenal Cortex
D000315 Adrenalectomy Excision of one or both adrenal glands. (From Dorland, 28th ed) Adrenalectomies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D017966 Pyramidal Cells Projection neurons in the CEREBRAL CORTEX and the HIPPOCAMPUS. Pyramidal cells have a pyramid-shaped soma with the apex and an apical dendrite pointed toward the pial surface and other dendrites and an axon emerging from the base. The axons may have local collaterals but also project outside their cortical region. Pyramidal Neurons,Cell, Pyramidal,Cells, Pyramidal,Neuron, Pyramidal,Neurons, Pyramidal,Pyramidal Cell,Pyramidal Neuron

Related Publications

H Karst, and W J Wadman, and M Joëls
January 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H Karst, and W J Wadman, and M Joëls
January 2001, Journal of neuroscience research,
H Karst, and W J Wadman, and M Joëls
May 1993, Neuroreport,
H Karst, and W J Wadman, and M Joëls
April 1990, Neuroscience letters,
H Karst, and W J Wadman, and M Joëls
October 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H Karst, and W J Wadman, and M Joëls
June 2002, Journal of neurophysiology,
H Karst, and W J Wadman, and M Joëls
March 1994, Journal of neurophysiology,
Copied contents to your clipboard!