Cortical stimulation induces fos expression in intrastriatal striatal grafts. 1994

J L Labandeira-Garcia, and M J Guerra
Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Spain.

Innervation of intrastriatal grafts of fetal striatal tissue by host corticostriatal projections has been shown in a number of previous studies in rats. In the work reported here, induction of Fos protein in grafted striatal neurons by electrical stimulation of the host frontoparietal cortex has been used as cell-level marker of corticostriatal postsynaptic responses within the striatal grafts. Unilateral cortical stimulation 30 min before sacrifice led to bilateral widespread and intense Fos induction throughout the normal striatum, although the response was somewhat more intense ipsilaterally and in the dorsolateral rostral striatum. In adult rats whose striatum had been lesioned with ibotenic acid 10-12 days prior to implantation of fetal striatal tissue, 3- and 18-month-old striatal grafts showed Fos immunoreactivity in a considerable number of cells after either bilateral, or ipsilateral (approximately 30-40% of the density of Fos-immunoreactive cells in the normal striatum) or contralateral cortical stimulation. Double-Fos and -DARPP-32 immunohistochemistry revealed that the Fos-immunoreactive nuclei were concentrated in the DARPP-32-positive (i.e. striatum-like) patches, which contained approximately 60% of the density of Fos-positive nuclei in the normal striatum after either ipsilateral or bilateral stimulation. However, Fos-immunoreactive nuclei were unevenly distributed within the DARPP-32-positive compartment of the graft, with some clusters of Fos-immunoreactive nuclei at 2-3 x the density observed in the normal striatum and other areas with Fos-immunoreactive nuclei present at lower density or absent. Fos induction was also observed in 4-week-old grafts, indicating that functional corticostriatal synaptic contacts develop rapidly. Striatal grafts implanted either in non-lesioned host striatum or in long-term (18 months) lesioned striatum, similarly showed Fos-positive nuclei after cortical stimulation, indicating that host corticostriatal fibers are equally capable of establishing functional synaptic contacts under these conditions. These results indicate that host corticostriatal fibres not only form an axonal network within the graft but also induce postsynaptic responses which may contribute to the observed graft-induced amelioration of lesion-derived behavioural deficits.

UI MeSH Term Description Entries
D007051 Ibotenic Acid A neurotoxic isoxazole (similar to KAINIC ACID and MUSCIMOL) found in AMANITA mushrooms. It causes motor depression, ataxia, and changes in mood, perceptions and feelings, and is a potent excitatory amino acid agonist. Acid, Ibotenic
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D010750 Phosphoproteins Phosphoprotein
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D016380 Brain Tissue Transplantation Transference of brain tissue, either from a fetus or from a born individual, between individuals of the same species or between individuals of different species. Grafting, Brain Tissue,Transplantation, Brain Tissue,Brain Tissue Grafting,Brain Tissue Graftings,Brain Tissue Transplantations,Graftings, Brain Tissue,Tissue Grafting, Brain,Tissue Graftings, Brain,Tissue Transplantation, Brain,Tissue Transplantations, Brain,Transplantations, Brain Tissue

Related Publications

J L Labandeira-Garcia, and M J Guerra
January 1992, Neuroscience,
J L Labandeira-Garcia, and M J Guerra
June 1992, Brain research,
J L Labandeira-Garcia, and M J Guerra
January 1990, Progress in brain research,
J L Labandeira-Garcia, and M J Guerra
December 1996, The European journal of neuroscience,
J L Labandeira-Garcia, and M J Guerra
January 1988, Experimental brain research,
J L Labandeira-Garcia, and M J Guerra
January 1999, Brain research bulletin,
Copied contents to your clipboard!