Dentate gyrus and olfactory bulb responses to olfactory and noxious stimulation in urethane anaesthetized rats. 1994

V R Heale, and C H Vanderwolf
Neuroscience Program, University of Western Ontario, London, Canada.

Recent research has shown that olfactory stimuli such as toluene vapor, but not visual, auditory, tactile or gustatory stimuli, elicit a burst of fast waves (15-30 Hz) in the hilus of the dentate gyrus in waking rats. In urethane-anaesthetized rats, toluene odors elicit similar fast waves. The present study shows that noxious stimulation (tail clamp) produces a blockade of spontaneous slow waves (1-12 Hz) in the hilus of the dentate gyrus but does not increase fast wave activity in urethane-anaesthetized rats. This slow wave blockade, which resembles neocortical activation, is independent of olfaction since it is not affected by tracheotomy. In contrast, tracheotomy abolishes the fast wave response to toluene presentation to the snout unless the toluene vapor is drawn into the nasal passages by suction at the rostral end of the severed trachea. Both the toluene odor-induced fast wave and the tail clamp-induced activation responses are abolished by scopolamine hydrobromide (5.0 mg/kg, i.p.) but not by scopolamine methyl bromide (5.0 mg/kg, i.p.) which does not cross the blood-brain barrier. However, evoked potentials elicited in the dentate hilus by single pulse stimulation of the olfactory bulb are not blocked by scopolamine in urethane-anaesthetized rats. The results suggest that several different types of electrical activity in the hippocampal formation are mediated by cholinergic inputs and that the dentate gyrus plays a role in olfaction.

UI MeSH Term Description Entries
D008297 Male Males
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D010276 Parasympatholytics Agents that inhibit the actions of the parasympathetic nervous system. The major group of drugs used therapeutically for this purpose is the MUSCARINIC ANTAGONISTS. Antispasmodic,Antispasmodic Agent,Antispasmodic Drug,Antispasmodics,Parasympathetic-Blocking Agent,Parasympathetic-Blocking Agents,Parasympatholytic,Parasympatholytic Agent,Parasympatholytic Drug,Spasmolytic,Spasmolytics,Antispasmodic Agents,Antispasmodic Drugs,Antispasmodic Effect,Antispasmodic Effects,Parasympatholytic Agents,Parasympatholytic Drugs,Parasympatholytic Effect,Parasympatholytic Effects,Agent, Antispasmodic,Agent, Parasympathetic-Blocking,Agent, Parasympatholytic,Agents, Antispasmodic,Agents, Parasympathetic-Blocking,Agents, Parasympatholytic,Drug, Antispasmodic,Drug, Parasympatholytic,Drugs, Antispasmodic,Drugs, Parasympatholytic,Effect, Antispasmodic,Effect, Parasympatholytic,Effects, Antispasmodic,Effects, Parasympatholytic,Parasympathetic Blocking Agent,Parasympathetic Blocking Agents
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000758 Anesthesia A state characterized by loss of feeling or sensation. This depression of nerve function is usually the result of pharmacologic action and is induced to allow performance of surgery or other painful procedures.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012601 Scopolamine An alkaloid from SOLANACEAE, especially DATURA and SCOPOLIA. Scopolamine and its quaternary derivatives act as antimuscarinics like ATROPINE, but may have more central nervous system effects. Its many uses include an anesthetic premedication, the treatment of URINARY INCONTINENCE and MOTION SICKNESS, an antispasmodic, and a mydriatic and cycloplegic. Hyoscine,Scopolamine Hydrobromide,Boro-Scopol,Isopto Hyoscine,Kwells,Scoburen,Scopace,Scopoderm TTS,Scopolamine Cooper,Transderm Scop,Transderm-V,Travacalm HO,Vorigeno,Boro Scopol,Transderm V
D012602 Scopolamine Derivatives Analogs or derivatives of scopolamine. Scopolamines,Derivatives, Scopolamine

Related Publications

V R Heale, and C H Vanderwolf
June 1970, Brain research,
V R Heale, and C H Vanderwolf
September 1988, The Journal of pharmacology and experimental therapeutics,
V R Heale, and C H Vanderwolf
January 1992, Synapse (New York, N.Y.),
V R Heale, and C H Vanderwolf
January 1972, Brain research,
V R Heale, and C H Vanderwolf
May 1957, The American journal of physiology,
Copied contents to your clipboard!