Denervation-induced dendritic alterations in CA1 pyramidal cells following kainic acid hippocampal lesions in rats. 1994

G K Pyapali, and D A Turner
Department of Surgery [Neurosurgery], Duke University Medical Center, Durham, NC 27710.

Kainic acid (KA) lesions of the CA3 region of the hippocampus lead to denervation of ipsilateral CA1 neurons. To assess denervation-induced post-synaptic changes, intracellular physiological recordings were performed in the CA1 region in vitro, from both control and KA-treated tissue. The neurons were intracellularly stained with neurobiotin, reconstructed using a quantitative three-dimensional system and analyzed for morphometric and electrotonic parameters. Total dendritic length was slightly longer in the denervated CA1 cells and there was a selective and significant increase in both branches and terminals in the mid-stratum radiatum (300-550 microns from the soma using Sholl analysis) in the KA-treated rats compared to untreated controls, particularly for cells at 5 days post-lesion and later, which exhibited graded synaptically-evoked bursts. However, there was no significant difference in the basal dendritic arborization. Electrotonic modelling of the dendritic structure revealed specific membrane resistivity values of 33.4 k omega.cm2 for the normal CA1 cells and 29.8 K omega-cm2 for the KA-treated cells, assuming an internal resistivity of 200 omega.cm2, shrinkage correction of 1.57 and a spatial distribution of dendritic spines. The number of dendritic terminals of these denervated CA1 neurons at electrotonic distances between 0.5 lambda and 0.7 lambda also significantly increased in the cells from KA-treated animals. These findings indicate that there is a selective and specific increase in the number of apical terminals and dendritic branches following the unilateral kainic acid lesion. These apical branch changes may represent dendritic sprouting as a post-synaptic response to the denervation, which was particularly marked in neurons exhibiting graded synaptic bursting behavior.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G K Pyapali, and D A Turner
July 1980, The Journal of comparative neurology,
G K Pyapali, and D A Turner
October 1996, Journal of neurophysiology,
G K Pyapali, and D A Turner
January 1981, Methods and findings in experimental and clinical pharmacology,
G K Pyapali, and D A Turner
March 2004, Brain research bulletin,
G K Pyapali, and D A Turner
January 1982, Methods and findings in experimental and clinical pharmacology,
G K Pyapali, and D A Turner
February 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!