The role of fludarabine-induced apoptosis and cell cycle synchronization in enhanced murine tumor radiation response in vivo. 1994

V Grégoire, and N T Van, and L C Stephens, and W A Brock, and L Milas, and W Plunkett, and W N Hittelman
Department of Clinical Investigation, University of Texas M.D. Anderson Cancer Center, Houston 77030.

We have previously reported that fludarabine, an adenine nucleoside analogue, significantly enhances radiation-induced tumor regrowth delay and local cure in several mouse tumors. Although fludarabine potentiated tumor regrowth delay at various times from -36 h to +6 h in a SA-NH mouse sarcoma model, the greatest enhancement was observed when fludarabine was administered 24 h before irradiation. The purpose of this study was to understand the basis for in vivo enhancement of radiation efficacy by fludarabine. To examine the effect of fludarabine on DNA synthesis and cell cycle progression, tumor-bearing mice were given fludarabine by an i.p. route and then bromodeoxyuridine at various times up to 36 h, followed 0.5 h later by tumor harvest. Two-parameter flow cytometry analysis of the tumor cells using an anti-bromodeoxyuridine antibody demonstrated that an 800-mg/kg fludarabine dose stops DNA synthesis within 3 h with recovery starting at 12 h. By 24 h after fludarabine treatment, a synchronized wave of cycling tumor cells appeared in G2-M phase. The degree of DNA synthesis shutdown and the timing of the reinitiation of DNA synthesis and cell cycle progression were all fludarabine dose dependent. Interestingly, DNA synthesis reinitiated only at the G1-S boundary; cells in the S phase at the time of fludarabine administration appeared to disappear from the tumor population. To confirm these observations more directly, we pretreated tumor-bearing mice i.p. with chlorodeoxyuridine to mark the cells in the S phase, gave them fludarabine 0.5 h later, and then gave them iododeoxyuridine 0.5 h before tumor harvest. Flow cytometry analysis using antibodies specific for chlorodeoxyuridine- and iododeoxyuridined-labeled cells confirmed that cells in the S phase at the time of fludarabine administration never reinitiated DNA synthesis and disappeared from the tumor population. Immunohistological analysis of tumor sections obtained after fludarabine administration demonstrated that prelabeled S-phase cells took on an apoptotic appearance and gradually disappeared from the tumors. An in situ DNA end labeling assay demonstrated DNA fragmentation in these morphologically apoptotic cells. These results suggest that the mechanism of fludarabine enhancement of radiation response involves induced S-phase cell loss through an apoptotic pathway and subsequent synchronization of the remaining cells to a more radiosensitive cell cycle phase at the time of irradiation.

UI MeSH Term Description Entries
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D011836 Radiation Tolerance The ability of some cells or tissues to survive lethal doses of IONIZING RADIATION. Tolerance depends on the species, cell type, and physical and chemical variables, including RADIATION-PROTECTIVE AGENTS and RADIATION-SENSITIZING AGENTS. Radiation Sensitivity,Radiosensitivity,Sensitivity, Radiation,Tolerance, Radiation,Radiation Sensitivities,Radiation Tolerances,Radiosensitivities,Sensitivities, Radiation,Tolerances, Radiation
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D014740 Vidarabine A nucleoside antibiotic isolated from Streptomyces antibioticus. It has some antineoplastic properties and has broad spectrum activity against DNA viruses in cell cultures and significant antiviral activity against infections caused by a variety of viruses such as the herpes viruses, the VACCINIA VIRUS and varicella zoster virus. Adenine Arabinoside,Ara-A,Arabinofuranosyladenine,Arabinosyladenine,9-beta-Arabinofuranosyladenine,9-beta-D-Arabinofuranosyladenine,Ara A,Vira-A,alpha-Ara A,alpha-D-Arabinofuranosyladenine,beta-Ara A,9 beta Arabinofuranosyladenine,9 beta D Arabinofuranosyladenine,Arabinoside, Adenine,Vira A,ViraA,alpha Ara A,alpha D Arabinofuranosyladenine,beta Ara A
D016196 S Phase Phase of the CELL CYCLE following G1 and preceding G2 when the entire DNA content of the nucleus is replicated. It is achieved by bidirectional replication at multiple sites along each chromosome. S Period,Period, S,Periods, S,Phase, S,Phases, S,S Periods,S Phases

Related Publications

V Grégoire, and N T Van, and L C Stephens, and W A Brock, and L Milas, and W Plunkett, and W N Hittelman
April 1986, Cancer letters,
V Grégoire, and N T Van, and L C Stephens, and W A Brock, and L Milas, and W Plunkett, and W N Hittelman
November 1979, Cancer research,
V Grégoire, and N T Van, and L C Stephens, and W A Brock, and L Milas, and W Plunkett, and W N Hittelman
October 1994, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
V Grégoire, and N T Van, and L C Stephens, and W A Brock, and L Milas, and W Plunkett, and W N Hittelman
January 1971, Acta oto-laryngologica,
V Grégoire, and N T Van, and L C Stephens, and W A Brock, and L Milas, and W Plunkett, and W N Hittelman
April 1969, The American journal of roentgenology, radium therapy, and nuclear medicine,
V Grégoire, and N T Van, and L C Stephens, and W A Brock, and L Milas, and W Plunkett, and W N Hittelman
September 1998, The American journal of pathology,
V Grégoire, and N T Van, and L C Stephens, and W A Brock, and L Milas, and W Plunkett, and W N Hittelman
February 1992, Cancer research,
V Grégoire, and N T Van, and L C Stephens, and W A Brock, and L Milas, and W Plunkett, and W N Hittelman
January 2003, Radiatsionnaia biologiia, radioecologiia,
V Grégoire, and N T Van, and L C Stephens, and W A Brock, and L Milas, and W Plunkett, and W N Hittelman
March 2004, Biochemical and biophysical research communications,
V Grégoire, and N T Van, and L C Stephens, and W A Brock, and L Milas, and W Plunkett, and W N Hittelman
June 1975, European journal of cancer,
Copied contents to your clipboard!