A model for transcription termination by RNA polymerase I. 1994

W H Lang, and B E Morrow, and Q Ju, and J R Warner, and R H Reeder
Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104-2092.

The transcription termination site for yeast RNA polymerase I requires not only an 11 bp binding site for Reb1p, but also about 46 bp of 5' flanking sequence. We propose that Reb1p bound to its site is part of a pause element, while the 5' flanking sequence contains a release element. Pausing requires little other than the DNA-binding domain of Reb1p and is not specific for polymerase I. The release element, however, can be polymerase specific. We propose a general model for eukaryotic transcription terminators in which termination occurs when a relatively nonspecific signal induces polymerase to pause in the context of a release element.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004742 Enhancer Elements, Genetic Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter. Enhancer Elements,Enhancer Sequences,Element, Enhancer,Element, Genetic Enhancer,Elements, Enhancer,Elements, Genetic Enhancer,Enhancer Element,Enhancer Element, Genetic,Enhancer Sequence,Genetic Enhancer Element,Genetic Enhancer Elements,Sequence, Enhancer,Sequences, Enhancer
D005057 Eukaryotic Cells Cells of the higher organisms, containing a true nucleus bounded by a nuclear membrane. Cell, Eukaryotic,Cells, Eukaryotic,Eukaryotic Cell
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

W H Lang, and B E Morrow, and Q Ju, and J R Warner, and R H Reeder
November 1989, Nucleic acids research,
W H Lang, and B E Morrow, and Q Ju, and J R Warner, and R H Reeder
April 1994, Molecular microbiology,
W H Lang, and B E Morrow, and Q Ju, and J R Warner, and R H Reeder
July 2022, Science advances,
W H Lang, and B E Morrow, and Q Ju, and J R Warner, and R H Reeder
October 2010, EMBO reports,
W H Lang, and B E Morrow, and Q Ju, and J R Warner, and R H Reeder
September 2020, Trends in genetics : TIG,
W H Lang, and B E Morrow, and Q Ju, and J R Warner, and R H Reeder
January 2013, Biochimica et biophysica acta,
W H Lang, and B E Morrow, and Q Ju, and J R Warner, and R H Reeder
March 1998, Frontiers in bioscience : a journal and virtual library,
W H Lang, and B E Morrow, and Q Ju, and J R Warner, and R H Reeder
May 1997, Journal of molecular biology,
W H Lang, and B E Morrow, and Q Ju, and J R Warner, and R H Reeder
May 1992, Molecular and cellular biology,
W H Lang, and B E Morrow, and Q Ju, and J R Warner, and R H Reeder
June 1990, Molecular and cellular biology,
Copied contents to your clipboard!