Translesional synthesis on DNA templates containing site-specifically placed deoxyadenosine and deoxyguanosine adducts formed by the plant carcinogen aristolochic acid. 1994

T H Broschard, and M Wiessler, and C W von der Lieth, and H H Schmeiser
Division of Molecular Toxicology, German Cancer Research Center, Heidelberg.

Synthetic oligonucleotides (18-mers) containing either a single deoxyadenosine residue or a single deoxyguanosine residue were treated with aristolochic acid I (AAI) or aristolochic acid II (AAII), the main components of the plant carcinogen aristolochic acid (AA). These reactions resulted in the formation of site-specifically adducted oligonucleotides containing the two known AAI-DNA adducts (dA-AAI, dG-AAI) or the two known AAII-DNA adducts (dA-AAII, dG-AAII) at position 15 from the 3' end. Using HPLC chromatography, the oligonucleotides were purified and subsequently shown to contain the adducts of interest by 32P-postlabelling. The adducted oligonucleotides were used as templates in primer (11-mer) extension reactions catalysed by modified bacteriophage T7 DNA polymerase (Sequenase). Regardless of the type of DNA adduct examined, DNA synthesis was blocked predominantly (80-90%) at the nucleotide 3' to each adduct, although primer extension to the full length of the template was noted with unmodified control templates. However, 15 nucleotide products, indicating blocking of DNA synthesis after incorporation of a nucleotide opposite the adduct and translesional synthesis products were formed in all cases in different amounts, depending on the adduct structure. When a 14-mer primer together with high dNTP concentrations was used to examine nucleotide incorporation directly across from the four different purine adducts we found that the deoxyadenosine adducts (dA-AAI and dA-AAII) allowed incorporation of dAMP and dTMP equally well, whereas the deoxyguanosine adducts (dG-AAI and dG-AAII) allowed preferential incorporation of dCMP. Molecular dynamic simulations showed that the aristolactam moiety of all adducts exhibit a strong stacking, with the adenine residue at the 3' end of the 14-mer primer. These studies demonstrate that all AA purine adducts provide severe blocks to DNA replication and that the guanine adducts may not be very efficient mutagenic lesions. In contrast, the translesional bypass past adenine adducts of the aristolochic acids suggests a mutagenic potential resulting from dAMP incorporation by polymerase. AT-->TA transversion mutations would be the mutagenic consequences of AA adenine adducts, which are consistent with the activating mutations of c-ras genes found in AA-induced tumours of rodents.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D010616 Phenanthrenes POLYCYCLIC AROMATIC HYDROCARBONS composed of three fused BENZENE rings.
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D003839 Deoxyadenosines Adenosine molecules which can be substituted in any position, but are lacking one hydroxyl group in the ribose part of the molecule. Adenine Deoxyribonucleosides,Adenylyldeoxyribonucleosides,Deoxyadenosine Derivatives,Deoxyribonucleosides, Adenine,Derivatives, Deoxyadenosine
D003849 Deoxyguanosine A nucleoside consisting of the base guanine and the sugar deoxyribose.
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries

Related Publications

T H Broschard, and M Wiessler, and C W von der Lieth, and H H Schmeiser
April 1992, Biochemistry,
T H Broschard, and M Wiessler, and C W von der Lieth, and H H Schmeiser
July 2001, Nucleic acids research,
T H Broschard, and M Wiessler, and C W von der Lieth, and H H Schmeiser
May 1993, Biochemistry,
T H Broschard, and M Wiessler, and C W von der Lieth, and H H Schmeiser
March 2008, Yao xue xue bao = Acta pharmaceutica Sinica,
T H Broschard, and M Wiessler, and C W von der Lieth, and H H Schmeiser
January 1990, Carcinogenesis,
T H Broschard, and M Wiessler, and C W von der Lieth, and H H Schmeiser
May 1997, The Journal of biological chemistry,
T H Broschard, and M Wiessler, and C W von der Lieth, and H H Schmeiser
November 2006, Chemical research in toxicology,
T H Broschard, and M Wiessler, and C W von der Lieth, and H H Schmeiser
September 1990, Carcinogenesis,
T H Broschard, and M Wiessler, and C W von der Lieth, and H H Schmeiser
June 2017, Current protocols in nucleic acid chemistry,
Copied contents to your clipboard!