Alterations in muscarinic K+ channel response to acetylcholine and to G protein-mediated activation in atrial myocytes isolated from failing human hearts. 1994

S Koumi, and C E Arentzen, and C L Backer, and J A Wasserstrom
Department of Medicine (Reingold ECG Center), Northwestern University School of Medicine, Chicago, IL 60611.

BACKGROUND A variety of previous studies have demonstrated reduced diastolic potential and electrical activity in atrial specimens from patients with heart disease. Although K+ channels play a major role in determining resting membrane potential and repolarization of the action potential, little is known about the effects of preexisting heart disease on human atrial K+ channel activity. RESULTS We characterized the inwardly rectifying K+ channel (IKI) and the muscarinic K+ channel [IK(ACh)] in atrial myocytes isolated from patients with heart failure (HF) and compared electrophysiological characteristics with those from donors (control) by the patch-clamp technique. Resting membrane potentials of isolated atrial myocytes from HF were more depolarized (-51.1 +/- 9.7 mV, mean +/- SD, n = 30 patients) than those from donors (-73.0 +/- 7.2 mV, n = 4 patients, P < .001). The action potential duration in HF was longer than that in donors. Although acetylcholine (ACh) shortened the action potential, reduced the overshoot, and hyperpolarized the atrial cell membrane in HF, these effects were attenuated compared with those observed in donors. The whole-cell membrane current slope conductance in HF was small, the reversal potential was more positive, and the sensitivity to ACh was less compared with donors. In single-channel recordings from cell-attached patches, IK1 channel conductance and gating characteristics were the same in HF and donor atria. When ACh was included in the pipette solution, IK(ACh) was activated in both groups. Single-channel slope conductance of IK(ACh) averaged 42 +/- 3 pS (n = 28) in HF and 44 +/- 2 pS (n = 4) in donors, and mean open lifetime was 1.3 +/- 0.3 milliseconds (n = 24) in HF and 1.5 +/- 0.4 milliseconds (n = 4) in donors. These values were virtually identical in the two groups (not significantly different, NS), although both single IK1 and IK(ACh) channel densities were less in HF. Channel open probability of IK(ACh) was also less in HF (4.0 +/- 1.2%, n = 24) than in donors (6.8 +/- 1.1%, n = 3, P < .01). The concentration of ACh at half-maximal activation was 0.11 mumol/L in HF and 0.03 mumol/L in donors. In excised inside-out patches, IK(ACh) from HF required higher concentrations of GTP and GTP gamma S to activate the channel compared with donors. These results suggest a reduced IK(ACh) channel sensitivity to M2 cholinergic receptor-linked G protein (Gi) in HF compared with donors. CONCLUSIONS Atrial myocytes isolated from failing human hearts exhibited a lower resting membrane potential and reduced sensitivity to ACh compared with donor atria. Whole-cell and single-channel measurements suggest that these alterations are caused by reduced IK1 and IK(ACh) channel density and reduced IK(ACh) channel sensitivity to Gi-mediated channel activation in HF.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D005260 Female Females
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006333 Heart Failure A heterogeneous condition in which the heart is unable to pump out sufficient blood to meet the metabolic need of the body. Heart failure can be caused by structural defects, functional abnormalities (VENTRICULAR DYSFUNCTION), or a sudden overload beyond its capacity. Chronic heart failure is more common than acute heart failure which results from sudden insult to cardiac function, such as MYOCARDIAL INFARCTION. Cardiac Failure,Heart Decompensation,Congestive Heart Failure,Heart Failure, Congestive,Heart Failure, Left-Sided,Heart Failure, Right-Sided,Left-Sided Heart Failure,Myocardial Failure,Right-Sided Heart Failure,Decompensation, Heart,Heart Failure, Left Sided,Heart Failure, Right Sided,Left Sided Heart Failure,Right Sided Heart Failure
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine

Related Publications

S Koumi, and C E Arentzen, and C L Backer, and J A Wasserstrom
May 1995, The Journal of membrane biology,
S Koumi, and C E Arentzen, and C L Backer, and J A Wasserstrom
June 1995, Naunyn-Schmiedeberg's archives of pharmacology,
S Koumi, and C E Arentzen, and C L Backer, and J A Wasserstrom
January 1996, Molecular and cellular biochemistry,
S Koumi, and C E Arentzen, and C L Backer, and J A Wasserstrom
January 1989, Naunyn-Schmiedeberg's archives of pharmacology,
S Koumi, and C E Arentzen, and C L Backer, and J A Wasserstrom
September 1991, The Journal of general physiology,
S Koumi, and C E Arentzen, and C L Backer, and J A Wasserstrom
December 2005, Journal of biomedical science,
S Koumi, and C E Arentzen, and C L Backer, and J A Wasserstrom
January 1998, The Journal of pharmacology and experimental therapeutics,
S Koumi, and C E Arentzen, and C L Backer, and J A Wasserstrom
January 1996, Molecular and cellular biochemistry,
S Koumi, and C E Arentzen, and C L Backer, and J A Wasserstrom
December 1991, The Journal of biological chemistry,
Copied contents to your clipboard!