Developmental profile of estrogen receptor mRNA in the preoptic area of male and female neonatal rats. 1994

L L DonCarlos, and R J Handa
Department of Cell Biology, Neurobiology and Anatomy, Loyola University, Stritch School of Medicine, Maywood, IL 60153.

Exposure to estrogen or estrogenic metabolites of testosterone during the early postnatal period has permanent effects on rodent brain development. Differential sensitivity to estrogen, as reflected by transcription of the estrogen receptor gene, might determine the period of maximal sensitivity to the masculinizing effects of estrogen. We used an 35S-labeled riboprobe and in situ hybridization to chart the development of estrogen receptor (ER) mRNA expression in the rat preoptic area, a brain region for which sexual dimorphisms and the effects of estrogen on development are particularly well documented. Neonatal male and female rats were sacrificed by perfusion fixation on postnatal days 0, 2, 4, 7 or 10 (PND; day of birth is PND 0). Many ER mRNA-containing cells were detected in the periventricular preoptic area and medical preoptic nucleus and the distribution of ER-synthesizing cells was similar in both sexes. Analysis of film autoradiograms showed that the relative steady state level of ER mRNA was significantly higher in females than in males at all ages except PND 0 and 10. The temporal profile of ER mRNA expression was different in males and females. ER mRNA did not change with age in males, whereas in females, ER mRNA was significantly higher on PND 2 compared with PND 0 and 10. These results demonstrate that the pattern of ER mRNA expression is quantitatively and qualitatively different between the sexes during the neonatal period. The pattern of ER mRNA expression contrasts markedly with previous reports of estrogen binding based on biochemical and autoradiographic steroid binding assays.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D011301 Preoptic Area Region of hypothalamus between the ANTERIOR COMMISSURE and OPTIC CHIASM. Area Preoptica,Lateral Preoptic Area,Medial Preoptic Area,Preoptic Nuclei,Area Preopticas,Area, Lateral Preoptic,Area, Medial Preoptic,Area, Preoptic,Areas, Lateral Preoptic,Areas, Medial Preoptic,Areas, Preoptic,Lateral Preoptic Areas,Medial Preoptic Areas,Nuclei, Preoptic,Nucleus, Preoptic,Preoptic Area, Lateral,Preoptic Area, Medial,Preoptic Areas,Preoptic Areas, Lateral,Preoptic Areas, Medial,Preoptic Nucleus,Preoptica, Area,Preopticas, Area
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D005260 Female Females
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012727 Sex Characteristics Those characteristics that distinguish one SEX from the other. The primary sex characteristics are the OVARIES and TESTES and their related hormones. Secondary sex characteristics are those which are masculine or feminine but not directly related to reproduction. Gender Characteristics,Gender Differences,Gender Dimorphism,Sex Differences,Sex Dimorphism,Sexual Dichromatism,Sexual Dimorphism,Characteristic, Gender,Characteristic, Sex,Dichromatism, Sexual,Dichromatisms, Sexual,Difference, Sex,Dimorphism, Gender,Dimorphism, Sex,Dimorphism, Sexual,Gender Characteristic,Gender Difference,Gender Dimorphisms,Sex Characteristic,Sex Difference,Sex Dimorphisms,Sexual Dichromatisms,Sexual Dimorphisms

Related Publications

L L DonCarlos, and R J Handa
July 1996, Brain research. Developmental brain research,
L L DonCarlos, and R J Handa
February 1995, Brain research. Developmental brain research,
L L DonCarlos, and R J Handa
December 1997, Neuroscience letters,
L L DonCarlos, and R J Handa
September 2000, Hormones and behavior,
L L DonCarlos, and R J Handa
August 1996, Neuroscience research,
L L DonCarlos, and R J Handa
January 1996, Neurobiology of aging,
L L DonCarlos, and R J Handa
August 1989, Journal of neuroendocrinology,
Copied contents to your clipboard!