Chorismate mutase/prephenate dehydratase from Escherichia coli K12. 2. Evidence for identical subunits catalysing the two activities. 1976

M J Gething, and B E Davidson

On the basis of amino acid composition, tryptic fingerprints and the determination of amino acid sequences around the four cysteine residues, it can be concluded that chorismate mutase/prephenate dehydratase from Escherichia coli K12 consists of identical, or closely similar subunits. It follows from this that the mutase and dehydratase activities of the enzyme are probably catalysed on the one subunit.

UI MeSH Term Description Entries
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011302 Prephenate Dehydratase An enzyme that catalyzes the conversion of prephenate to phenylpyruvate with the elimination of water and carbon dioxide. In the enteric bacteria this enzyme also possesses chorismate mutase activity, thereby catalyzing the first two steps in the biosynthesis of phenylalanine. EC 4.2.1.51. Chorismate Mutase-Prephenate Dehydratase,Prephenate Hydro-lyase,Chorismate Mutase Prephenate Dehydratase,Dehydratase, Chorismate Mutase-Prephenate,Dehydratase, Prephenate,Hydro-lyase, Prephenate,Mutase-Prephenate Dehydratase, Chorismate,Prephenate Hydro lyase
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002827 Chorismic Acid A cyclohexadiene carboxylic acid derived from SHIKIMIC ACID and a precursor for the biosynthesis of UBIQUINONE and the AROMATIC AMINO ACIDS. Acid, Chorismic
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006836 Hydro-Lyases Enzymes that catalyze the breakage of a carbon-oxygen bond leading to unsaturated products via the removal of water. EC 4.2.1. Dehydratase,Dehydratases,Hydrase,Hydrases,Hydro Lyase,Hydro-Lyase,Hydro Lyases,Lyase, Hydro,Lyases, Hydro
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin

Related Publications

M J Gething, and B E Davidson
January 1987, Methods in enzymology,
M J Gething, and B E Davidson
October 1981, Archives of biochemistry and biophysics,
M J Gething, and B E Davidson
March 1971, Biochimica et biophysica acta,
M J Gething, and B E Davidson
January 1983, Biochimica et biophysica acta,
M J Gething, and B E Davidson
July 1972, The Journal of biological chemistry,
M J Gething, and B E Davidson
January 1987, Methods in enzymology,
Copied contents to your clipboard!