Expression and regulation of gonadotropin-releasing hormone (GnRH) and GnRH receptor messenger ribonucleic acids in human granulosa-luteal cells. 1994

C Peng, and N C Fan, and M Ligier, and J Väänänen, and P C Leung
Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.

The present study investigated the expression and regulation of GnRH and GnRH receptor (GnRHR) messenger RNAs (mRNAs) in human granulosa-luteal cells using reverse transcription-polymerase chain reaction (RT-PCR). Granulosa-luteal cells were aspirated from preovulatory follicles obtained from women undergoing in vitro fertilization. Two sets of primers derived from human hypothalamic GnRHR complementary DNA (cDNA) were used to amplify cDNAs from granulosa-luteal cells. PCR products corresponding to the expected sizes of GnRH were obtained from granulosa-luteal cells as well as the brain, but not from skeletal muscle cDNA. The authenticity of the PCR products was confirmed by Southern blot hybridization with internal oligonucleotide probes and by subsequent cloning and sequencing. Similarly, using four sets of primers specific for the human pituitary GnRHR cDNA, PCR products with the expected sizes were detected from both brain and granulosa-luteal cells, but not from skeletal muscle. PCR products were subsequently confirmed by Southern blot hybridization using an internal oligonucleotide probe or a cDNA probe which was obtained from screening a human pituitary cDNA library. Cloning and sequencing of the PCR product in the 3'-untranslated region revealed identical sequence with the reported human pituitary GnRHR cDNA sequence. RNA samples obtained from cells immediately after dissociation or after 2, 5, and 8 days of culture were analyzed by RT-PCR, and in all cases, both GnRH and GnRHR mRNA were detected. To investigate how gene expression of GnRH and GnRHR is regulated, we examined the effect of GnRH and hCG on GnRH and GnRHR mRNA levels in cultured human granulosa-luteal cells. Treatment with different concentrations of GnRH induced biphasic responses. Both GnRH and GnRHR mRNA were significantly increased by 1 nM, but slightly decreased by 1 microM GnRH; 1 nM GnRH also significantly inhibited progesterone production, whereas higher doses had no effect. Treatment with hCG (1 IU/ml) decreased GnRHR mRNA levels without altering the expression of the GnRH gene. These results demonstrate for the first time that 1) both GnRH and GnRHR mRNAs are expressed in human granulosa-luteal cells; 2) GnRH mRNA levels are autoregulated by GnRH; and 3) GnRHR gene expression is up-regulated by GnRH, but down-regulated by hCG. These findings provide strong evidence that GnRH is an autocrine regulator in the human ovary.

UI MeSH Term Description Entries
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011966 Receptors, LHRH Receptors with a 6-kDa protein on the surfaces of cells that secrete LUTEINIZING HORMONE or FOLLICLE STIMULATING HORMONE, usually in the adenohypophysis. LUTEINIZING HORMONE-RELEASING HORMONE binds to these receptors, is endocytosed with the receptor and, in the cell, triggers the release of LUTEINIZING HORMONE or FOLLICLE STIMULATING HORMONE by the cell. These receptors are also found in rat gonads. INHIBINS prevent the binding of GnRH to its receptors. GnRH Receptors,Gonadoliberin Receptors,Gonadorelin Receptors,Gonadotropin Releasing-Hormone Receptors,LHFSHRH Receptors,LHRH Receptors,Luliberin Receptors,Receptors, GnRH,Receptors, Gonadoliberin,Receptors, Gonadorelin,Receptors, Luliberin,Follicle Stimulating Hormone-Releasing Hormone Receptors,GnRH Receptor,Gonadorelin Receptor,Gonadotropin-Releasing Hormone Receptor,LHRH Receptor,Luteinizing Hormone Releasing Hormone Receptors,Luteinizing Hormone Releasing-Hormone Receptor,Receptor, LHRH,Receptors, Gonadotropin Releasing-Hormone,Receptors, LHFSHRH,Follicle Stimulating Hormone Releasing Hormone Receptors,Gonadotropin Releasing Hormone Receptor,Gonadotropin Releasing Hormone Receptors,Hormone Receptor, Gonadotropin-Releasing,Luteinizing Hormone Releasing Hormone Receptor,Receptor, GnRH,Receptor, Gonadorelin,Receptor, Gonadotropin-Releasing Hormone,Receptors, Gonadotropin Releasing Hormone,Releasing-Hormone Receptors, Gonadotropin
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006063 Chorionic Gonadotropin A gonadotropic glycoprotein hormone produced primarily by the PLACENTA. Similar to the pituitary LUTEINIZING HORMONE in structure and function, chorionic gonadotropin is involved in maintaining the CORPUS LUTEUM during pregnancy. CG consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is virtually identical to the alpha subunits of the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity (CHORIONIC GONADOTROPIN, BETA SUBUNIT, HUMAN). Chorionic Gonadotropin, Human,HCG (Human Chorionic Gonadotropin),Biogonadil,Choriogonadotropin,Choriogonin,Chorulon,Gonabion,Human Chorionic Gonadotropin,Pregnyl,Gonadotropin, Chorionic,Gonadotropin, Human Chorionic
D006107 Granulosa Cells Supporting cells for the developing female gamete in the OVARY. They are derived from the coelomic epithelial cells of the gonadal ridge. Granulosa cells form a single layer around the OOCYTE in the primordial ovarian follicle and advance to form a multilayered cumulus oophorus surrounding the OVUM in the Graafian follicle. The major functions of granulosa cells include the production of steroids and LH receptors (RECEPTORS, LH). Cell, Granulosa,Cells, Granulosa,Granulosa Cell

Related Publications

C Peng, and N C Fan, and M Ligier, and J Väänänen, and P C Leung
February 2003, The Journal of clinical endocrinology and metabolism,
C Peng, and N C Fan, and M Ligier, and J Väänänen, and P C Leung
January 2001, Endocrinology,
C Peng, and N C Fan, and M Ligier, and J Väänänen, and P C Leung
June 1997, The Journal of clinical endocrinology and metabolism,
C Peng, and N C Fan, and M Ligier, and J Väänänen, and P C Leung
January 1995, Endocrinology,
C Peng, and N C Fan, and M Ligier, and J Väänänen, and P C Leung
March 1996, General and comparative endocrinology,
Copied contents to your clipboard!