9-cis retinoic acid regulation of rat growth hormone gene expression: potential roles of multiple nuclear hormone receptors. 1994

A Sugawara, and P M Yen, and W W Chin
Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.

Rat GH (rGH) gene expression is increased by both thyroid hormone (T3) and all-trans retinoic acid (RA) via a composite hormone response element (HRE) containing three putative half-sites (rGH-HRE). However, it is not known whether 9-cis RA (9cRA) also can regulate rGH gene expression. In this study, we performed a Northern blot analysis that demonstrated that 9cRA, as well as T3 and RA, increased rGH messenger RNA expression in rat pituitary GH3 cells. Transient transfection studies in GH3 cells, using reporter plasmids containing the rGH-HRE and mutated half-sites, revealed that 9cRA-stimulation of rGH transcription was mediated by the rGH-HRE and that all three half-sites are necessary. Additionally, we performed cotransfection studies to elucidate the particular receptor complexes involved in 9cRA regulation of rGH gene expression using CV-1 cells, which contain little or no endogenous RA receptors, and thyroid hormone receptors. Interestingly, in the presence of either retinoid X receptor alone, RA receptors alone, or both receptors, 9cRA caused similar induction of transcriptional activity. However, cotransfection of thyroid hormone receptors with these receptors repressed basal and blocked 9cRA-induced transcriptional activity in the absence of T3. Our data suggest that 9cRA-stimulation of rGH transcription is likely mediated by 9cRA-bound retinoid X receptor- and/or RA receptor-containing complexes but not by thyroid hormone receptor-containing complexes. Our studies provide evidence that several different members of the nuclear hormone receptor family can interact on this composite DNA element, with transcription stimulated or blocked depending on the presence or absence of cognate ligands.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

A Sugawara, and P M Yen, and W W Chin
August 2002, Endocrine reviews,
A Sugawara, and P M Yen, and W W Chin
January 1994, Archives of toxicology. Supplement. = Archiv fur Toxikologie. Supplement,
A Sugawara, and P M Yen, and W W Chin
December 1989, Nutrition reviews,
A Sugawara, and P M Yen, and W W Chin
March 1993, Biochemical and biophysical research communications,
A Sugawara, and P M Yen, and W W Chin
May 1989, Nature,
A Sugawara, and P M Yen, and W W Chin
November 1991, DNA and cell biology,
A Sugawara, and P M Yen, and W W Chin
June 1989, Current opinion in cell biology,
A Sugawara, and P M Yen, and W W Chin
January 1997, Journal of receptor and signal transduction research,
Copied contents to your clipboard!