Comparison of receptive field properties of neurons in area 17 of normal and bilaterally amblyopic cats. 1994

N V Swindale, and D E Mitchell
Department of Ophthalmology, University of British Columbia, Vancouver, Canada.

Receptive field properties of extracellularly recorded units in the visual cortex (area 17) of cats made bilaterally amblyopic by a variety of rearing conditions were measured and compared with the properties of units in normal cats. Properties studied included sensitivity to vernier offset, response facilitation to increasing bar length, receptive field size, responsiveness to moving and flashed stimuli, orientation tuning, the relation between mean firing rate and its variance, the amount of overlap of regions of on and off responsiveness in simple and complex cells, and, for flashed stimuli, latency to response onset, time to peak response, and response decay time constant. Behavioural testing of the amblyopic animals showed that spatial resolution was 2-4 times lower and vernier acuity thresholds 10-20 times greater than normal. Despite this, several neuronal response properties did not differ significantly from those in normal animals. These included peak responsiveness to moving stimuli, widths of orientation tuning curves, response variability, and latency to initial response for flashed stimuli. Other properties showed small but significant changes. Sensitivity to vernier offset (impulses per degree of offset) was reduced to nearly half its normal level; receptive field sizes increased by about 24% and an incomplete segregation of regions of on and off responsiveness was found in some cells, which made them hard to classify as simple or complex. Responses to flashed stimuli were smaller and more persistent. Their statistical significance notwithstanding, it seems unlikely that these relatively small response abnormalities in area 17 can fully account for the observed behavioural deficits.

UI MeSH Term Description Entries
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000550 Amblyopia A nonspecific term referring to impaired vision. Major subcategories include stimulus deprivation-induced amblyopia and toxic amblyopia. Stimulus deprivation-induced amblyopia is a developmental disorder of the visual cortex. A discrepancy between visual information received by the visual cortex from each eye results in abnormal cortical development. STRABISMUS and REFRACTIVE ERRORS may cause this condition. Toxic amblyopia is a disorder of the OPTIC NERVE which is associated with ALCOHOLISM, tobacco SMOKING, and other toxins and as an adverse effect of the use of some medications. Anisometropic Amblyopia,Lazy Eye,Amblyopia, Developmental,Amblyopia, Stimulus Deprivation-Induced,Amblyopia, Suppression,Stimulus Deprivation-Induced Amblyopia,Amblyopia, Anisometropic,Amblyopia, Stimulus Deprivation Induced,Amblyopias,Amblyopias, Anisometropic,Amblyopias, Developmental,Amblyopias, Stimulus Deprivation-Induced,Amblyopias, Suppression,Anisometropic Amblyopias,Deprivation-Induced Amblyopia, Stimulus,Deprivation-Induced Amblyopias, Stimulus,Developmental Amblyopia,Developmental Amblyopias,Eye, Lazy,Eyes, Lazy,Lazy Eyes,Stimulus Deprivation Induced Amblyopia,Stimulus Deprivation-Induced Amblyopias,Suppression Amblyopia,Suppression Amblyopias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014792 Visual Acuity Clarity or sharpness of OCULAR VISION or the ability of the eye to see fine details. Visual acuity depends on the functions of RETINA, neuronal transmission, and the interpretative ability of the brain. Normal visual acuity is expressed as 20/20 indicating that one can see at 20 feet what should normally be seen at that distance. Visual acuity can also be influenced by brightness, color, and contrast. Acuities, Visual,Acuity, Visual,Visual Acuities
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014794 Visual Fields The total area or space visible in a person's peripheral vision with the eye looking straightforward. Field, Visual,Fields, Visual,Visual Field
D015349 Vision, Monocular Images seen by one eye. Monocular Vision,Monovision

Related Publications

N V Swindale, and D E Mitchell
March 1980, The Journal of comparative neurology,
N V Swindale, and D E Mitchell
December 2009, Experimental brain research,
N V Swindale, and D E Mitchell
March 2016, Journal of neurophysiology,
N V Swindale, and D E Mitchell
September 1969, Electroencephalography and clinical neurophysiology,
N V Swindale, and D E Mitchell
May 1987, Journal of neurophysiology,
N V Swindale, and D E Mitchell
January 1994, Somatosensory & motor research,
N V Swindale, and D E Mitchell
July 1972, The Journal of physiology,
N V Swindale, and D E Mitchell
April 1987, Journal of neurophysiology,
Copied contents to your clipboard!