Delayed macrophage responses and myelin clearance during Wallerian degeneration in the central nervous system: the dorsal radiculotomy model. 1994

R George, and J W Griffin
Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287.

All aspects of Wallerian degeneration (WD)--axonal breakdown, glial and macrophage responses, and clearance of myelin debris--have generally been considered to occur more slowly in the central nervous system (CNS) than in the peripheral nervous system (PNS). We reevaluated this issue by comparing the temporal pattern of Wallerian degeneration in nerve fibers with segments extending through both the PNS and the CNS. The L4, L5, and L6 dorsal roots in the rat were transected, and WD in the dorsal roots and the dorsal columns was compared at intervals up to 8 months, using electron microscopy and immunostaining to identify and characterize the different cell types. The initial breakdown of axoplasm was complete by 72 h both in the PNS and in the CNS portions of these axons. All other aspects of WD were strikingly delayed in the CNS when compared to those in the PNS. Macrophages (from the circulation) increased in number (Days 2-4 after axotomy) in the root. In contrast, although there was an early and transient period (peaking at Day 3) of microglial activation in the degenerating dorsal column, the appearance of round macrophages was delayed until Days 18-21. Both axonal debris and myelin debris were almost completely cleared by 30 days in the PNS, but remained over 90 days in the CNS. Axonal regeneration was vigorous in the dorsal root but these sprouts did not invade the dorsal columns. The dorsal root entry zone provided a sharp anatomic demarcation between the PNS and CNS patterns of Wallerian degeneration. These results suggest that circulating macrophages have ready access to degenerating peripheral nerves, but are largely or completely excluded from degenerating CNS tracts, so that the macrophages (that ultimately appear) originate primarily from the stellate microglia.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D005260 Female Females
D005904 Glial Fibrillary Acidic Protein An intermediate filament protein found only in glial cells or cells of glial origin. MW 51,000. Glial Intermediate Filament Protein,Astroprotein,GFA-Protein,Glial Fibrillary Acid Protein,GFA Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

R George, and J W Griffin
January 2000, Journal of neuroscience research,
R George, and J W Griffin
June 1992, Journal of the neurological sciences,
R George, and J W Griffin
July 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R George, and J W Griffin
May 2010, Journal of neuropathology and experimental neurology,
R George, and J W Griffin
June 2002, Microscopy research and technique,
Copied contents to your clipboard!