Identification of a complete Cek7 receptor protein tyrosine kinase coding sequence and cDNAs of alternatively spliced transcripts. 1994

D A Siever, and M F Verderame
Department of Microbiology and Immunology, Pennsylvania State University, College of Medicine, Hershey 17033.

Receptor protein tyrosine kinases (RPTK) are critical components of signal transduction pathways in multicellular organisms. Identification of new RPTK constitutes an initial step in understanding the variety of signalling pathways in which these proteins participate. In this study, a cDNA containing a complete coding sequence for Cek7 (chicken RPTK) has been cloned from a chicken embryo expression library using anti-phosphotyrosine antibodies (Ab). Cek7 is a member of the EPH (human RPTK) subfamily of RPTK; this subfamily is characterized by extracellular domains containing an immunoglobulin-like motif, a Cys-rich region and two fibronectin type-III repeats. Analysis of additional cDNAs revealed that two positions of alternative splicing in primary transcripts may produce several isoforms of this RPTK; cDNAs corresponding to three isoforms of this receptor are reported. These isoforms are predicted to have altered extracellular ligand-binding domains and/or altered cytoplasmic juxtamembrane regions. The nucleotide sequence of cek7 cDNAs identified in this study diverges at the 3' end from the sequence found in a recently described partial cek7 cDNA [Sajjadi and Pasquale, Oncogene 8 (1993) 1807-1813]. Therefore, a third position of alternative splicing may produce Cek7 RPTK with divergent C-terminal tails. RNA blot analysis revealed expression of this receptor at highest levels in the central nervous system and eyes of 10-day-old chicken embryos.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein
D017398 Alternative Splicing A process whereby multiple RNA transcripts are generated from a single gene. Alternative splicing involves the splicing together of other possible sets of EXONS during the processing of some, but not all, transcripts of the gene. Thus a particular exon may be connected to any one of several alternative exons to form a mature RNA. The alternative forms of mature MESSENGER RNA produce PROTEIN ISOFORMS in which one part of the isoforms is common while the other parts are different. RNA Splicing, Alternative,Splicing, Alternative,Alternate Splicing,Nested Transcripts,Alternate Splicings,Alternative RNA Splicing,Alternative RNA Splicings,Alternative Splicings,Nested Transcript,RNA Splicings, Alternative,Splicing, Alternate,Splicing, Alternative RNA,Splicings, Alternate,Splicings, Alternative,Splicings, Alternative RNA,Transcript, Nested,Transcripts, Nested

Related Publications

D A Siever, and M F Verderame
August 1995, Brain research. Molecular brain research,
D A Siever, and M F Verderame
November 2002, Biochemical and biophysical research communications,
D A Siever, and M F Verderame
October 1999, Tissue antigens,
D A Siever, and M F Verderame
September 2004, European journal of human genetics : EJHG,
D A Siever, and M F Verderame
February 2012, Brain research bulletin,
D A Siever, and M F Verderame
January 2011, Methods in molecular biology (Clifton, N.J.),
D A Siever, and M F Verderame
December 1998, Annals of the New York Academy of Sciences,
D A Siever, and M F Verderame
August 1991, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!