A cDNA encoding the human transforming growth factor beta receptor suppresses the growth defect of a yeast mutant. 1994

J Nikawa
Department of Biochemical Engineering and Science, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan.

Transforming growth factor beta (TGF-beta) is a multifunctional factor that regulates many aspects of cellular processes. TGF-beta signals through a heteromeric complex of type-I and type-II receptors, which both belong to the transmembrane (TM) receptor serine/threonine kinase family. Reported here is the isolation of a subtype of the human TGF-beta receptor type II from a cDNA library using a Saccharomyces cerevisiae mutant. This yeast mutant has a defect in the expression of the gene encoding inositol-1-phosphate synthase and requires myo-inositol for its growth. The cloned subtype of the TGF-beta receptor type II has a 25-amino-acid insertion relative to the reported receptor type-II sequence. In addition to that encoding the TGF-beta receptor, two more human genes were obtained using the same yeast mutant. They encode the protein phosphatase type 2A regulatory subunit A and a 14-3-3 protein which is known as a regulatory protein for protein kinases. These results clearly indicate that these human genes function in yeast cells. It is also suggested that yeast possesses a signal transduction mechanism resembling the human TGF-beta-mediated signaling pathway.

UI MeSH Term Description Entries
D007296 Myo-Inositol-1-Phosphate Synthase An enzyme that catalyzes the formation of myo-inositol-1-phosphate from glucose-6-phosphate in the presence of NAD. EC 5.5.1.4. Cycloaldolase,Inositol Cyclase,Inositol-1-Phosphate Synthase,Cyclase, Inositol,Inositol 1 Phosphate Synthase,Myo Inositol 1 Phosphate Synthase,Synthase, Inositol-1-Phosphate,Synthase, Myo-Inositol-1-Phosphate
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations

Related Publications

J Nikawa
September 1997, Investigative ophthalmology & visual science,
J Nikawa
May 1996, The international journal of biochemistry & cell biology,
J Nikawa
January 1988, DNA (Mary Ann Liebert, Inc.),
Copied contents to your clipboard!