Rhodopsin accumulation at abnormal sites in retinas of mice with a human P23H rhodopsin transgene. 1994

D J Roof, and M Adamian, and A Hayes
Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston.

OBJECTIVE To investigate the mechanism by which photoreceptors degenerate in transgenic mice carrying a mutant human rhodopsin gene (P23H). METHODS The temporal and spatial pattern of the retinal degeneration caused by P23H rhodopsin was mapped using immunocytochemistry with rhodopsin-specific antibodies. The subcellular localizations of rhodopsin, transducin, and rod cGMP phosphodiesterase (PDE) were also determined, and rhodopsin localization was compared among P23H transgenic mice, rd mice, and Royal College of Surgeons (RCS) rats. RESULTS In transgenic mice that express P23H rhodopsin, photoreceptors are lost centrally by postnatal day 10. As the retina degenerates, rhodopsin accumulates in the outer nuclear layer and within the photoreceptor synaptic terminals. The P23H transgenic retinas also show an accumulation of transducin and PDE within the outer plexiform layer. In contrast, other types of hereditary retinal degenerations studied show a similar pattern of rhodopsin accumulation in the outer nuclear layer but not in the outer plexiform layer of the retina. CONCLUSIONS The pattern of degeneration in the P23H transgenic retina is consistent with a model in which the centrally located, first-born photoreceptors are the first to die. In contrast to other animal models for hereditary retinal degeneration (rd, RCS), a novel feature of the P23H degeneration is an accumulation of rhodopsin, transducin, and PDE within the outer plexiform layer of the retina. One hypothesis to explain this observation is that P23H rhodopsin is routed intracellularly through a pathway not used by normal rhodopsin. Nonmutant forms of the peripheral transducing proteins normally associated with disk membrane, such as transducin and PDE, may accompany the aberrantly routed rhodopsin.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D012162 Retinal Degeneration A retrogressive pathological change in the retina, focal or generalized, caused by genetic defects, inflammation, trauma, vascular disease, or aging. Degeneration affecting predominantly the macula lutea of the retina is MACULAR DEGENERATION. (Newell, Ophthalmology: Principles and Concepts, 7th ed, p304) Degeneration, Retinal,Degenerations, Retinal,Retinal Degenerations
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012243 Rhodopsin A purplish-red, light-sensitive pigment found in RETINAL ROD CELLS of most vertebrates. It is a complex consisting of a molecule of ROD OPSIN and a molecule of 11-cis retinal (RETINALDEHYDE). Rhodopsin exhibits peak absorption wavelength at about 500 nm. Visual Purple
D015106 3',5'-Cyclic-GMP Phosphodiesterases Enzymes that catalyze the hydrolysis of cyclic GMP to yield guanosine-5'-phosphate. 3',5'-Cyclic GMP 5'-Nucleotidohydrolase,3',5'-Cyclic GMP Phosphodiesterase,3',5'-Cyclic-GMP Phosphodiesterase,3,5-Cyclic GMP 5-Nucleotidohydrolase,3,5-Cyclic GMP Phosphodiesterase,3',5' Cyclic GMP 5' Nucleotidohydrolase,3',5' Cyclic GMP Phosphodiesterase,3',5' Cyclic GMP Phosphodiesterases,3,5 Cyclic GMP 5 Nucleotidohydrolase,3,5 Cyclic GMP Phosphodiesterase,5'-Nucleotidohydrolase, 3',5'-Cyclic GMP,5-Nucleotidohydrolase, 3,5-Cyclic GMP,GMP 5'-Nucleotidohydrolase, 3',5'-Cyclic,GMP 5-Nucleotidohydrolase, 3,5-Cyclic,GMP Phosphodiesterase, 3',5'-Cyclic,GMP Phosphodiesterase, 3,5-Cyclic,Phosphodiesterase, 3',5'-Cyclic GMP,Phosphodiesterase, 3',5'-Cyclic-GMP,Phosphodiesterase, 3,5-Cyclic GMP,Phosphodiesterases, 3',5'-Cyclic-GMP

Related Publications

D J Roof, and M Adamian, and A Hayes
November 1995, Biochemical and biophysical research communications,
D J Roof, and M Adamian, and A Hayes
January 1982, Methods in enzymology,
D J Roof, and M Adamian, and A Hayes
September 2000, Investigative ophthalmology & visual science,
D J Roof, and M Adamian, and A Hayes
April 2014, Cellular signalling,
D J Roof, and M Adamian, and A Hayes
November 2000, Molecular vision,
D J Roof, and M Adamian, and A Hayes
December 2011, Investigative ophthalmology & visual science,
D J Roof, and M Adamian, and A Hayes
January 2012, Advances in experimental medicine and biology,
D J Roof, and M Adamian, and A Hayes
June 2012, Experimental eye research,
Copied contents to your clipboard!