Biochemical characterization of the essential GTP-binding protein Obg of Bacillus subtilis. 1994

K M Welsh, and K A Trach, and C Folger, and J A Hoch
Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037.

An essential guanine nucleotide-binding protein, Obg, of Bacillus subtilis has been characterized with respect to its enzymatic activity for GTP. The protein was seen to hydrolyze GTP with a Km of 5.4 microM and a kcat of 0.0061 min-1 at 37 degrees C. GDP was a competitive inhibitor of this hydrolysis, with an inhibition constant of 1.7 microM at 37 degrees C. The dissociation constant for GDP from the Obg protein was 0.5 microM at 4 degrees C and was estimated to be 1.3 microM at 37 degrees C. Approximately 80% of the purified protein was capable of binding GDP. In addition to hydrolysis of GTP, Obg was seen to autophosphorylate with this substrate. Subsequent release of the covalent phosphate proceeds at too slow a rate to account for the overall rate of GTP hydrolysis, indicating that in vitro hydrolysis does not proceed via the observed phosphoamidate intermediate. It was speculated that the phosphorylated form of the enzyme may represent either a switched-on or a switched-off configuration, either of which may be normally induced by an effector molecule. This enzyme from a temperature-sensitive mutant of Obg did not show significantly altered GTPase activity at the nonpermissive temperature.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010750 Phosphoproteins Phosphoprotein
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005804 Genes, Lethal Genes whose loss of function or gain of function MUTATION leads to the death of the carrier prior to maturity. They may be essential genes (GENES, ESSENTIAL) required for viability, or genes which cause a block of function of an essential gene at a time when the essential gene function is required for viability. Alleles, Lethal,Allele, Lethal,Gene, Lethal,Lethal Allele,Lethal Alleles,Lethal Gene,Lethal Genes
D006153 Guanosine Diphosphate A guanine nucleotide containing two phosphate groups esterified to the sugar moiety. GDP,Guanosine 5'-Diphosphate,Guanosine 5'-Trihydrogen Diphosphate,5'-Diphosphate, Guanosine,5'-Trihydrogen Diphosphate, Guanosine,Diphosphate, Guanosine,Diphosphate, Guanosine 5'-Trihydrogen,Guanosine 5' Diphosphate,Guanosine 5' Trihydrogen Diphosphate

Related Publications

K M Welsh, and K A Trach, and C Folger, and J A Hoch
December 1994, Journal of bacteriology,
K M Welsh, and K A Trach, and C Folger, and J A Hoch
June 1995, Journal of bacteriology,
K M Welsh, and K A Trach, and C Folger, and J A Hoch
August 1999, Journal of bacteriology,
K M Welsh, and K A Trach, and C Folger, and J A Hoch
February 2011, BMC microbiology,
K M Welsh, and K A Trach, and C Folger, and J A Hoch
November 2002, Microbiology (Reading, England),
K M Welsh, and K A Trach, and C Folger, and J A Hoch
November 2002, Structure (London, England : 1993),
K M Welsh, and K A Trach, and C Folger, and J A Hoch
October 2008, Journal of bacteriology,
K M Welsh, and K A Trach, and C Folger, and J A Hoch
December 2000, Journal of bacteriology,
K M Welsh, and K A Trach, and C Folger, and J A Hoch
March 1989, Journal of bacteriology,
Copied contents to your clipboard!