Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle. 1994

M Yudkoff, and D Nelson, and Y Daikhin, and M Erecińska
Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia.

The flux through different segments of the tricarboxylic acid cycle was measured in rat brain synaptosomes with gas chromatography-mass spectrometry using either deuterated glutamine or [13C]aspartate. The flux between 2-oxoglutarate and oxaloacetate was estimated to be 3.14 and 4.97 nmol/min/mg protein with and without glucose, respectively. These values were 3-5-fold faster than the flux between oxaloacetate and 2-oxoglutarate (0.92 nmol/min per mg protein) measured in the presence of glucose. The pattern of intermediates labeling suggests that the overall rate-controlling reaction involves either citrate synthase or pyruvate dehydrogenase but not 2-oxoglutarate or isocitrate dehydrogenase. The enrichment in [3,3,4,4-2H4]glutamate from [2,3,3,4,4-2H5]glutamine was as rapid as in [2,3,3,4,4-2H5]glutamate, which indicates that the aspartate aminotransferase reaction is severalfold faster than the flux through the tricarboxylic acid cycle. [13C]Aspartate was rapidly converted to [13C]malate, suggesting that in intact synaptosomes aspartate entry into the mitochondrion is very slow. The finding that aspartate is taken up by mitochondria as malate, along with the observed high enrichment in [3-2H]malate (from [2,3,3,4,4-2H5]glutamine), is consistent with the substantial synaptosomal activity of the malate/aspartate shuttle.

UI MeSH Term Description Entries
D008297 Male Males
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002952 Citric Acid Cycle A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds. Krebs Cycle,Tricarboxylic Acid Cycle,Citric Acid Cycles,Cycle, Citric Acid,Cycle, Krebs,Cycle, Tricarboxylic Acid,Cycles, Citric Acid,Cycles, Tricarboxylic Acid,Tricarboxylic Acid Cycles
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D013574 Synaptosomes Pinched-off nerve endings and their contents of vesicles and cytoplasm together with the attached subsynaptic area of the membrane of the post-synaptic cell. They are largely artificial structures produced by fractionation after selective centrifugation of nervous tissue homogenates. Synaptosome
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

M Yudkoff, and D Nelson, and Y Daikhin, and M Erecińska
February 1971, Metabolism: clinical and experimental,
M Yudkoff, and D Nelson, and Y Daikhin, and M Erecińska
April 2023, Protein & cell,
M Yudkoff, and D Nelson, and Y Daikhin, and M Erecińska
May 1988, Journal of neurochemistry,
M Yudkoff, and D Nelson, and Y Daikhin, and M Erecińska
January 1999, The Journal of burn care & rehabilitation,
M Yudkoff, and D Nelson, and Y Daikhin, and M Erecińska
April 1995, Biochimica et biophysica acta,
M Yudkoff, and D Nelson, and Y Daikhin, and M Erecińska
January 1977, Biochemical Society transactions,
M Yudkoff, and D Nelson, and Y Daikhin, and M Erecińska
October 1976, Journal of molecular and cellular cardiology,
M Yudkoff, and D Nelson, and Y Daikhin, and M Erecińska
August 1983, The Journal of biological chemistry,
Copied contents to your clipboard!