Interactions of neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF), and the NT-3.BDNF heterodimer with the extracellular domains of the TrkB and TrkC receptors. 1994

J Philo, and J Talvenheimo, and J Wen, and R Rosenfeld, and A Welcher, and T Arakawa
Amgen Inc., Thousand Oaks, California 91320-1789.

Interactions of three neurotrophin dimers, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and a NT-3.BDNF heterodimer with extracellular, soluble TrkB and TrkC receptors were studied using native gels, light scattering, and sedimentation equilibrium. These three neurotrophins showed binding of two TrkB receptors per neurotrophin dimer, with a tendency to dissociate into one TrkB per dimer for NT-3 and the heterodimer, as determined by native gels, light scattering, and sedimentation equilibrium. For TrkC, native gels suggested binding of NT-3, heterodimer, and BDNF but not of nerve growth factor. Sedimentation equilibrium revealed that all three neurotrophin molecules bind to TrkC at two receptors per dimer but that BDNF binds much more weakly and that the heterodimer has an intermediate binding strength. Light scattering/size exclusion chromatography showed complexes with two TrkC receptors per NT-3 dimer and one TrkC per heterodimer but did not detect binding of BDNF to TrkC. This latter result is not inconsistent with the sedimentation data, because the weak binding of BDNF to TrkC may be easily dissociated by nonspecific interactions of BDNF with the size exclusion column. The relative binding constants for these neurotrophins and the soluble receptor extracellular domains, as determined by sedimentation equilibrium, are correlated with their biological activity. However, the magnitude of these binding constants is insufficient by approximately 3 orders of magnitude to promote receptor dimerization at physiologically active concentrations.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation

Related Publications

J Philo, and J Talvenheimo, and J Wen, and R Rosenfeld, and A Welcher, and T Arakawa
April 1994, European journal of biochemistry,
J Philo, and J Talvenheimo, and J Wen, and R Rosenfeld, and A Welcher, and T Arakawa
February 2008, Journal of neuroscience research,
J Philo, and J Talvenheimo, and J Wen, and R Rosenfeld, and A Welcher, and T Arakawa
April 1995, Biochemistry,
J Philo, and J Talvenheimo, and J Wen, and R Rosenfeld, and A Welcher, and T Arakawa
January 2016, Nordic journal of psychiatry,
J Philo, and J Talvenheimo, and J Wen, and R Rosenfeld, and A Welcher, and T Arakawa
January 2017, Revista Argentina de microbiologia,
J Philo, and J Talvenheimo, and J Wen, and R Rosenfeld, and A Welcher, and T Arakawa
November 1997, Experimental neurology,
J Philo, and J Talvenheimo, and J Wen, and R Rosenfeld, and A Welcher, and T Arakawa
May 1991, Cell,
J Philo, and J Talvenheimo, and J Wen, and R Rosenfeld, and A Welcher, and T Arakawa
March 1992, The EMBO journal,
J Philo, and J Talvenheimo, and J Wen, and R Rosenfeld, and A Welcher, and T Arakawa
September 1995, Biochemistry,
J Philo, and J Talvenheimo, and J Wen, and R Rosenfeld, and A Welcher, and T Arakawa
April 2005, Journal of neuroscience research,
Copied contents to your clipboard!