Pharmacokinetics and metabolism of a new antitumor semisynthetic ether phospholipid, 14C-labeled plasmanyl-(N-acyl)ethanolamine, in mice bearing sarcoma Mc11. 1994

J Kára, and N I Zimakova, and E A Serebryakova, and V Dĕdková, and A E Zolotaryov
Laboratory of Evolutionary Biology, Czech Academy of Sciences Prague 4.

New natural and semisynthetic antitumor ether phospholipids PNAE and PNAE(s) [plasmanyl-(N-acyl)ethanolamines] and their selective antitumor activity in vivo have been described previously. We are now presenting the pharmacokinetics, in vivo metabolism and distribution of a [14C]PNAE(s) preparation (1-O-octadecyl-2-oleoyl-sn-glycero-3-phospho-(N-[U-14C]palmitoyl) ethanolamine in the intact or Mc11-tumor-bearing BDF1 mice. Only partial degradation (about 50%-60%) of [14C]PNAE(s) was observed in vivo 24 h after i.v. administration, as detected by TLC analysis of phospholipids extracted from the blood, liver, tumor and brain of animals. Pharmacokinetic curves of [14C]PNAE(s) and its metabolites were fitted with a two-compartment model (t alpha 1/2 = 2.5 h, t beta 1/2 = 61.6 h). After repeated i.v. doses of [14C]PNAE(s) (administered on days 1, 2, 3, 4, and 5) accumulation of [14C]PNAE(s) and lyso-[14C]PNAE(s) in tumor tissue was detected. High levels of [14C]PNAE(s) were also detected in the liver, lung and spleen of animals. After i.v. administration of [14C]PNAE(s) the ether phospholipid was also detected in the brain tissue. The parmacokinetic data indicate that repeated parenteral doses of PNAE(s) are necessary to attain therapeutic concentrations in tumor tissue. The very high accumulation of [14C]PNAE(s) in the liver of animals after repeated i.v. doses, and the absence of toxic side-effects in vivo indicate a possible clinical therapeutic use of PNAE(s), especially in the treatment of tumor metastases in liver as well as in the prophylaxis of liver metastases after surgical removal of primary tumors.

UI MeSH Term Description Entries
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D000284 Administration, Oral The giving of drugs, chemicals, or other substances by mouth. Drug Administration, Oral,Administration, Oral Drug,Oral Administration,Oral Drug Administration,Administrations, Oral,Administrations, Oral Drug,Drug Administrations, Oral,Oral Administrations,Oral Drug Administrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D012513 Sarcoma, Experimental Experimentally induced neoplasms of CONNECTIVE TISSUE in animals to provide a model for studying human SARCOMA. EHS Tumor,Sarcoma, Engelbreth-Holm-Swarm,Sarcoma, Jensen,Experimental Sarcoma,Experimental Sarcomas,Sarcomas, Experimental,Engelbreth-Holm-Swarm Sarcoma,Jensen Sarcoma,Sarcoma, Engelbreth Holm Swarm,Tumor, EHS
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

J Kára, and N I Zimakova, and E A Serebryakova, and V Dĕdková, and A E Zolotaryov
January 1991, Biochemistry international,
J Kára, and N I Zimakova, and E A Serebryakova, and V Dĕdková, and A E Zolotaryov
January 1993, Neoplasma,
J Kára, and N I Zimakova, and E A Serebryakova, and V Dĕdková, and A E Zolotaryov
December 1987, Casopis lekaru ceskych,
J Kára, and N I Zimakova, and E A Serebryakova, and V Dĕdková, and A E Zolotaryov
January 1991, Biomedical science,
J Kára, and N I Zimakova, and E A Serebryakova, and V Dĕdková, and A E Zolotaryov
October 1992, Anti-cancer drugs,
J Kára, and N I Zimakova, and E A Serebryakova, and V Dĕdková, and A E Zolotaryov
September 1975, Arzneimittel-Forschung,
J Kára, and N I Zimakova, and E A Serebryakova, and V Dĕdková, and A E Zolotaryov
December 1993, Journal of nuclear biology and medicine (Turin, Italy : 1991),
J Kára, and N I Zimakova, and E A Serebryakova, and V Dĕdková, and A E Zolotaryov
January 1989, Cancer chemotherapy and pharmacology,
Copied contents to your clipboard!