Effects of transforming growth factor-beta 1 on human adrenocortical fasciculata-reticularis cell differentiated functions. 1994

M C Lebrethon, and C Jaillard, and D Naville, and M Bégeot, and J M Saez
INSERM-INRA U-307, Hôpital Debrousse, Lyon, France.

Transforming growth factor-beta 1 (TGF beta 1) has been reported to have a strong inhibitory effect on the specific function of adrenal cells of several species. In the present study, we examined the effects of TGF beta 1 on cultured human fasciculata-reticularis cells. TGF beta 1 alone had no effect on ACTH receptor messenger ribonucleic acid (mRNA) levels and was unable to reduce the strong stimulatory effects of ACTH on its own receptor. However, TGF beta 1 enhanced angiotensin-II type 1 receptor mRNA and binding sites. Treatment with TGF beta 1 increased significantly the levels of 3 beta-hydroxysteroid dehydrogenase mRNA, reduced those of cytochrome P-450 17 alpha-hydroxylase mRNA, and had no effect on cholesterol side-chain cleavage cytochrome P-450 mRNA. Whatever the experimental condition, TGF beta 1 did not reduce basal or ACTH-stimulated cortisol production, but the production of dehydroepiandrosterone sulfate of TGF beta 1-treated cells was always decreased. The effects of TGF beta 1 on 3 beta-hydroxysteroid dehydrogenase mRNA and dehydroepiandrosterone sulfate were opposite the change observed at the time of adrenarche. As adrenal cells express TGF beta 1 mRNA, it is tempting to postulate that a local diminution of TGF beta 1 might be involved in adrenarche. Our findings also illustrate the specific species differences and, therefore, the caution to extrapolate to humans the results observed in other species.

UI MeSH Term Description Entries
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003687 Dehydroepiandrosterone A major C19 steroid produced by the ADRENAL CORTEX. It is also produced in small quantities in the TESTIS and the OVARY. Dehydroepiandrosterone (DHEA) can be converted to TESTOSTERONE; ANDROSTENEDIONE; ESTRADIOL; and ESTRONE. Most of DHEA is sulfated (DEHYDROEPIANDROSTERONE SULFATE) before secretion. Dehydroisoandrosterone,Prasterone,5-Androsten-3-beta-hydroxy-17-one,5-Androsten-3-ol-17-one,Androstenolone,DHEA,Prasterone, 3 alpha-Isomer,5 Androsten 3 beta hydroxy 17 one,5 Androsten 3 ol 17 one,Prasterone, 3 alpha Isomer
D004798 Enzymes Biological molecules that possess catalytic activity. They may occur naturally or be synthetically created. Enzymes are usually proteins, however CATALYTIC RNA and CATALYTIC DNA molecules have also been identified. Biocatalyst,Enzyme,Biocatalysts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006854 Hydrocortisone The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Cortef,Cortisol,Pregn-4-ene-3,20-dione, 11,17,21-trihydroxy-, (11beta)-,11-Epicortisol,Cortifair,Cortril,Epicortisol,Hydrocortisone, (11 alpha)-Isomer,Hydrocortisone, (9 beta,10 alpha,11 alpha)-Isomer,11 Epicortisol
D000302 Adrenal Cortex The outer layer of the adrenal gland. It is derived from MESODERM and comprised of three zones (outer ZONA GLOMERULOSA, middle ZONA FASCICULATA, and inner ZONA RETICULARIS) with each producing various steroids preferentially, such as ALDOSTERONE; HYDROCORTISONE; DEHYDROEPIANDROSTERONE; and ANDROSTENEDIONE. Adrenal cortex function is regulated by pituitary ADRENOCORTICOTROPIN. Cortex, Adrenal
D000324 Adrenocorticotropic Hormone An anterior pituitary hormone that stimulates the ADRENAL CORTEX and its production of CORTICOSTEROIDS. ACTH is a 39-amino acid polypeptide of which the N-terminal 24-amino acid segment is identical in all species and contains the adrenocorticotrophic activity. Upon further tissue-specific processing, ACTH can yield ALPHA-MSH and corticotrophin-like intermediate lobe peptide (CLIP). ACTH,Adrenocorticotropin,Corticotropin,1-39 ACTH,ACTH (1-39),Adrenocorticotrophic Hormone,Corticotrophin,Corticotrophin (1-39),Corticotropin (1-39),Hormone, Adrenocorticotrophic,Hormone, Adrenocorticotropic
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

M C Lebrethon, and C Jaillard, and D Naville, and M Bégeot, and J M Saez
October 1987, The Journal of biological chemistry,
M C Lebrethon, and C Jaillard, and D Naville, and M Bégeot, and J M Saez
September 1986, Biochemical and biophysical research communications,
M C Lebrethon, and C Jaillard, and D Naville, and M Bégeot, and J M Saez
December 1988, Molecular and cellular endocrinology,
M C Lebrethon, and C Jaillard, and D Naville, and M Bégeot, and J M Saez
May 1996, The Journal of biological chemistry,
M C Lebrethon, and C Jaillard, and D Naville, and M Bégeot, and J M Saez
January 1999, The Journal of steroid biochemistry and molecular biology,
M C Lebrethon, and C Jaillard, and D Naville, and M Bégeot, and J M Saez
July 1987, Biochemical and biophysical research communications,
M C Lebrethon, and C Jaillard, and D Naville, and M Bégeot, and J M Saez
January 1991, Endocrine research,
M C Lebrethon, and C Jaillard, and D Naville, and M Bégeot, and J M Saez
May 2003, The Journal of craniofacial surgery,
M C Lebrethon, and C Jaillard, and D Naville, and M Bégeot, and J M Saez
October 1998, Leukemia research,
M C Lebrethon, and C Jaillard, and D Naville, and M Bégeot, and J M Saez
August 1990, Biochemical and biophysical research communications,
Copied contents to your clipboard!