Hyperinsulinemia prevents prolonged hyperglycemia after intense exercise in insulin-dependent diabetic subjects. 1994

R J Sigal, and C Purdon, and S J Fisher, and J B Halter, and M Vranic, and E B Marliss
McGill Nutrition and Food Science Center, Royal Victoria Hospital, Montreal, Quebec, Canada.

Hyperglycemia with accompanying hyperinsulinemia occurs after brief, greater than 85% maximum oxygen consumption exercise to exhaustion in normal subjects and persists up to 60 min of recovery. To determine the importance of endogenous insulin secretion during and after intense exercise, responses to exercise of lean fit male post-absorptive insulin-dependent diabetes mellitus (IDDM) subjects, aged 18-34 yr, were compared with those of control subjects (C; n = 6). Three iv insulin protocols were employed: hyperglycemic (HG; n = 7) and euglycemic (EG1; n = 6) with constant insulin infusion, and euglycemic with doubled insulin infusion during recovery (EG2; n = 6). Overnight iv insulin was adjusted to achieve prolonged euglycemia (5.4 +/- 0.3 mmol/L) or hyperglycemia (8.6 +/- 0.3 mmol/L) before exercise. This allowed for comparisons between HG and EG1 (constant infusion) and between C and EG2 (to approximate physiological hyperinsulinemia by doubling the infusion rates at exhaustion for 56 +/- 7 min during recovery). Subjects exercised to 89-98% of their individual maximum oxygen consumption for 12.8 +/- 0.3 min. Glycemia increased to maximum values at 6 min of recovery (9.8 +/- 0.5 in HG, 6.9 +/- 0.4 in EG1, 7.3 +/- 0.3 in EG2, and 6.9 +/- 0.4 mmol/L in C). Whereas in EG2 and C, glucose returned to resting values in 50-80 min, it remained elevated at 120 min recovery in HG and EG1. During exercise, [3-3H]-glucose-determined glucose production increased markedly and exceeded disappearance in all groups, but less so in the HG subjects than in the other groups. An early recovery decline in glucose production did not differ among groups, but MCR (rate of glucose disappearance/glycemia) were markedly lower in HG and EG1, in whom plasma free insulin remained unchanged from 15 min of recovery onward (MCR, 1.6-1.9 vs. 2.3-2.8 mL/kg.min in C). Doubling the insulin infusion rate in EG2 restored the MCR response to that of C subjects. In summary, constant insulin infusion is insufficient to prevent prolonged postexercise hyperglycemia in IDDM subjects, even when provided at a rate sufficient to maintain normal resting glycemia and glucose turnover. The finding that increasing the rate of insulin infusion restored plasma glucose to normal in IDDM subjects suggests that the postexercise increase in insulin levels observed in normal subjects is essential to return plasma glucose to resting levels. Therefore, special strategies, differing from those for less strenuous exercise, are required for the management of insulin therapy in IDDM during and after intense exercise.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010807 Physical Endurance The time span between the beginning of physical activity by an individual and the termination because of exhaustion. Endurance, Physical,Physical Stamina,Stamina, Physical
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D005230 Fatty Acids, Nonesterified FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form. Fatty Acids, Free,Free Fatty Acid,Free Fatty Acids,NEFA,Acid, Free Fatty,Acids, Free Fatty,Acids, Nonesterified Fatty,Fatty Acid, Free,Nonesterified Fatty Acids

Related Publications

R J Sigal, and C Purdon, and S J Fisher, and J B Halter, and M Vranic, and E B Marliss
April 1988, Diabetes care,
R J Sigal, and C Purdon, and S J Fisher, and J B Halter, and M Vranic, and E B Marliss
January 1985, Pharmatherapeutica,
R J Sigal, and C Purdon, and S J Fisher, and J B Halter, and M Vranic, and E B Marliss
November 2003, Circulation,
R J Sigal, and C Purdon, and S J Fisher, and J B Halter, and M Vranic, and E B Marliss
December 1990, Metabolism: clinical and experimental,
R J Sigal, and C Purdon, and S J Fisher, and J B Halter, and M Vranic, and E B Marliss
March 1993, The Journal of clinical endocrinology and metabolism,
R J Sigal, and C Purdon, and S J Fisher, and J B Halter, and M Vranic, and E B Marliss
February 1978, Scandinavian journal of clinical and laboratory investigation,
R J Sigal, and C Purdon, and S J Fisher, and J B Halter, and M Vranic, and E B Marliss
January 1990, Journees annuelles de diabetologie de l'Hotel-Dieu,
R J Sigal, and C Purdon, and S J Fisher, and J B Halter, and M Vranic, and E B Marliss
May 1996, Internal medicine (Tokyo, Japan),
R J Sigal, and C Purdon, and S J Fisher, and J B Halter, and M Vranic, and E B Marliss
December 1961, Bollettino della Societa italiana di biologia sperimentale,
R J Sigal, and C Purdon, and S J Fisher, and J B Halter, and M Vranic, and E B Marliss
October 1992, The Journal of clinical endocrinology and metabolism,
Copied contents to your clipboard!