Proctolin and excitation of the crayfish swimmeret system. 1994

L D Acevedo, and W M Hall, and B Mulloney
Section of Neurobiology, Physiology and Behavior, University of California, Davis 95616.

The ventral nerve cord of crayfish contains axons of five pairs of excitatory interneurons, each of which can activate the swimmeret system. Perfusion of the ventral nerve cord with the neuropeptide proctolin also activates the swimmeret system. The experiments reported here were conducted to test the hypothesis that one or more of these excitatory interneurons uses proctolin as a transmitter. Each of the five excitatory axons was located and stimulated separately in an individual crayfish, and similar motor activity was elicited by stimulating each of them. Quantitative comparison of spontaneous swimmeret motor patterns with activity caused by stimulating one of these excitatory axons, EC, or by perfusing with proctolin solutions showed that the motor patterns produced under these three conditions were not significantly different (P > 0.05). By using a new, affinity-purified proctolin antiserum, we labeled axons in the connective tissue between the last thoracic and first abdominal ganglion and compared the positions of labeled axons with the previously described positions of the excitatory axons. About 0.3% of the axons in these connective tissues showed proctolin-like immunoreactivity, but heavily labeled pairs of axons did occur bilaterally in the regions of excitatory swimmeret axons. The projections of these labeled axons into the abdominal ganglia were traced in serial plastic sections. Labeled processes were abundant in the lateral neuropils, the loci of the swimmeret pattern-generating circuitry. From this evidence, we propose that three of these excitatory swimmeret interneurons use proctolin as a transmitter, but that a fourth does not. The evidence for the fifth axon is ambiguous.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D003400 Astacoidea A superfamily of various freshwater CRUSTACEA, in the infraorder Astacidea, comprising the crayfish. Common genera include Astacus and Procambarus. Crayfish resemble lobsters, but are usually much smaller. Astacus,Crayfish,Procambarus,Astacoideas,Crayfishs
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D017952 Ganglia, Invertebrate Clusters of neuronal cell bodies in invertebrates. Invertebrate ganglia may also contain neuronal processes and non-neuronal supporting cells. Many invertebrate ganglia are favorable subjects for research because they have small numbers of functional neuronal types which can be identified from one animal to another. Invertebrate Ganglia,Ganglion, Invertebrate,Ganglions, Invertebrate,Invertebrate Ganglion,Invertebrate Ganglions

Related Publications

L D Acevedo, and W M Hall, and B Mulloney
September 1987, Journal of neurophysiology,
L D Acevedo, and W M Hall, and B Mulloney
February 1995, Journal of neurophysiology,
L D Acevedo, and W M Hall, and B Mulloney
January 1985, The Journal of experimental biology,
L D Acevedo, and W M Hall, and B Mulloney
December 1993, Journal of neurophysiology,
L D Acevedo, and W M Hall, and B Mulloney
January 1991, The Journal of experimental biology,
L D Acevedo, and W M Hall, and B Mulloney
March 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
L D Acevedo, and W M Hall, and B Mulloney
August 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience,
L D Acevedo, and W M Hall, and B Mulloney
March 1971, Journal of neurophysiology,
Copied contents to your clipboard!