Transient increase in expression of GAD65 and GAD67 mRNAs during postnatal development of rat spinal cord. 1994

W Ma, and T Behar, and L Chang, and J L Barker
Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892.

Gamma-aminobutyric acid (GABA) is thought to be one of the classic neurotransmitters acting as a developmental signal. To understand the role for GABA in development, we investigated the expression of transcripts encoding two forms of the GABA-synthesizing enzyme glutamate decarboxylase (GAD65 and GAD67) in the cervical enlargement of the rat spinal cord at successive postnatal days--P0, P7, P14, P21, and P90 (adult)--by using in situ hybridization histochemistry. Cells hybridized with two oligonucleotide probes designed to detect GAD65 and GAD67 mRNAs were widely distributed in all laminae, except in motoneurons of the spinal cord. The integrated densities of hybridization signals were measured across all layers of the gray matter. The relative number of GAD mRNA-labeled cells was determined within each of four regions: laminae I-III, laminae IV-VI, laminae VII and VIII, and lamina X. There was a transient increase in both the integrated density and the relative number of hybridized cells between P7 and P14, after which there was a marked decline to adult levels (lowest). An overall decrease in the number of GAD mRNA-labeled cells was evident in all layers, but a dramatic drop occurred in a subpopulation of cells within ventral portions of the spinal cord. The distribution patterns and postnatal changes in expression of the mRNAs encoding GAD65 and GAD67 were similar and closely paralleled reported changes in the abundance of GAD65 and GAD67 proteins and their product, GABA. Transient increases in GAD mRNA expression during the early postnatal period coincide with, and may be linked to, synapse formation and synapse elimination of the developing spinal cord.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

W Ma, and T Behar, and L Chang, and J L Barker
December 1998, The Journal of comparative neurology,
W Ma, and T Behar, and L Chang, and J L Barker
December 2003, The Journal of comparative neurology,
W Ma, and T Behar, and L Chang, and J L Barker
November 1997, Brain research. Developmental brain research,
W Ma, and T Behar, and L Chang, and J L Barker
December 1988, The EMBO journal,
W Ma, and T Behar, and L Chang, and J L Barker
April 1988, Brain research,
W Ma, and T Behar, and L Chang, and J L Barker
January 1998, Perspectives on developmental neurobiology,
W Ma, and T Behar, and L Chang, and J L Barker
December 1993, Diabetes,
W Ma, and T Behar, and L Chang, and J L Barker
April 1993, Brain research. Developmental brain research,
Copied contents to your clipboard!