Circulating gonadotrophin surge-attenuating factor from superovulated women suppresses in vitro gonadotrophin-releasing hormone self-priming. 1994

P A Fowler, and P Cunningham, and M Fraser, and F MacGregor, and B Byrne, and A Pappas, and I E Messinis, and A Templeton
Department of Obstetrics and Gynaecology, University of Aberdeen, Foresterhill, UK.

A perifusion system based on ovine pituitary tissue explants was used to investigate the effects of follicular fluid (hFF) and serum from superovulated women on pituitary responsiveness to gonadotrophin-releasing hormone (GnRH). The specific aims of the study were to determine both if gonadotrophin surge-attenuating factor (GnSAF) bioactivity is present in the peripheral circulation as well as in the follicles of superovulated women and if GnSAF suppresses GnRH self-priming in vitro. Two pulses of GnRH, 1 h apart, produced marked peaks in LH secreted from control chambers, with GnRH self-priming evident in the significant difference between the first (134.4 +/- 1.7 - 232.1 +/- 24.0% of basal secretion) and second (183.9 +/- 15.8 - 313.9 +/- 14.0% of basal secretion) LH peaks. Both follicular fluid and serum pooled from two different groups of women produced marked suppression of the first (unprimed) and second (primed) LH peaks. The hFF reduced the first LH peak to 69.6 +/- 7.8 and 60.2 +/- 9.7% and the second LH peak to 57.4 +/- 6.7 and 42.6 +/- 6.5% of control LH secretion. Overall, the serum reduced the first and second LH peaks to 76.8 +/- 4.2 and 62.9 +/- 3.6% of control respectively. These results demonstrated that GnSAF bioactivity suppresses GnRH self-priming, and is present in both the peripheral circulation and hFF. The same material administered to dispersed ovine pituitary monolayers produced similar marked suppression of GnRH-induced LH secretion, with approximately 50-fold less GnSAF bioactivity in serum compared with hFF. Combined doses of oestradiol and progesterone, or hFF from large follicles containing little GnSAF, produced stimulation of GnRH-induced LH secretion and GnRH self-priming (second peaks 78.1 +/- 38.9 and 27.4 +/- 15.7% respectively higher than first peaks). Thus, in conclusion, GnSAF in hFF and serum markedly attenuated both unprimed and primed pituitary response to GnRH, virtually abolishing the GnRH self-priming effect.

UI MeSH Term Description Entries
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D005260 Female Females

Related Publications

P A Fowler, and P Cunningham, and M Fraser, and F MacGregor, and B Byrne, and A Pappas, and I E Messinis, and A Templeton
April 1991, Clinical endocrinology,
P A Fowler, and P Cunningham, and M Fraser, and F MacGregor, and B Byrne, and A Pappas, and I E Messinis, and A Templeton
January 1993, Journal of reproduction and fertility,
P A Fowler, and P Cunningham, and M Fraser, and F MacGregor, and B Byrne, and A Pappas, and I E Messinis, and A Templeton
August 1994, Human reproduction (Oxford, England),
P A Fowler, and P Cunningham, and M Fraser, and F MacGregor, and B Byrne, and A Pappas, and I E Messinis, and A Templeton
September 1992, The Journal of endocrinology,
P A Fowler, and P Cunningham, and M Fraser, and F MacGregor, and B Byrne, and A Pappas, and I E Messinis, and A Templeton
July 1990, The Journal of endocrinology,
P A Fowler, and P Cunningham, and M Fraser, and F MacGregor, and B Byrne, and A Pappas, and I E Messinis, and A Templeton
January 1995, Biology of reproduction,
P A Fowler, and P Cunningham, and M Fraser, and F MacGregor, and B Byrne, and A Pappas, and I E Messinis, and A Templeton
February 1996, Clinical endocrinology,
P A Fowler, and P Cunningham, and M Fraser, and F MacGregor, and B Byrne, and A Pappas, and I E Messinis, and A Templeton
September 1994, Human reproduction (Oxford, England),
P A Fowler, and P Cunningham, and M Fraser, and F MacGregor, and B Byrne, and A Pappas, and I E Messinis, and A Templeton
August 1990, Clinical endocrinology,
P A Fowler, and P Cunningham, and M Fraser, and F MacGregor, and B Byrne, and A Pappas, and I E Messinis, and A Templeton
May 1991, Journal of reproduction and fertility,
Copied contents to your clipboard!