Metabotropic glutamate receptor activation induces calcium waves within hippocampal dendrites. 1994

D B Jaffe, and T H Brown
Department of Psychology, Yale University, New Haven, Connecticut 06520-8205.

1. We investigated the effects of metabotropic glutamate (mGlu) receptor activation on intracellular Ca2+ concentration ([Ca2+]i) in the soma and dendrites of hippocampal CA1 pyramidal neurons. Changes in [Ca2+]i were measured using confocal imaging simultaneously with whole-cell recording techniques. Differences in [Ca2+]i were visualized as changes in the fluorescence of the Ca(2+)-sensitive dye Fluo-3. 2. Brief application of the specific mGlu receptor agonist (1S,3R)-ACPD to either the apical or basal dendrites produced initially localized increases in [Ca2+]i that subsequently propagated as waves throughout much of the neuron. These Ca2+ waves, which propagated at approximately 40 microns/s, were shown not to reflect intracellular Ca2+ diffusion or extracellular diffusion of ACPD and were always accompanied by small outward membrane currents. 3. Repetitive application of ACPD failed to trigger further Ca2+ release. We found that a threshold level of voltage-gated Ca2+ entry during trains of action potentials was needed to prime further mGlu-stimulated Ca2+ release. In contrast, the passage of time alone did not cause the mGlu-release system to reactivate--restoration of ACPD-stimulated Ca2+ release. The spike-mediated Ca2+ signal was unaffected by mGlu-stimulated depletion of intracellular stores. 4. These experiments demonstrate that specific mGlu receptor activation can mobilize Ca2+ in dendrites of CA1 neurons and trigger waves of Ca(2+)-induced Ca(2+)-release throughout the cell. A use-dependent relationship between voltage-gated Ca2+ entry during trains of action potentials and mGlu-stimulated Ca2+ release is suggested.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D046508 Culture Techniques Methods of maintaining or growing biological materials in controlled laboratory conditions. These include the cultures of CELLS; TISSUES; organs; or embryo in vitro. Both animal and plant tissues may be cultured by a variety of methods. Cultures may derive from normal or abnormal tissues, and consist of a single cell type or mixed cell types. Culture Technique,Technique, Culture,Techniques, Culture
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

D B Jaffe, and T H Brown
September 1994, The Journal of biological chemistry,
D B Jaffe, and T H Brown
December 2018, Cerebral cortex (New York, N.Y. : 1991),
D B Jaffe, and T H Brown
December 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D B Jaffe, and T H Brown
October 1995, Journal of neurobiology,
D B Jaffe, and T H Brown
September 2013, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D B Jaffe, and T H Brown
December 2018, The European journal of neuroscience,
Copied contents to your clipboard!