Pharmacodynamic modeling of bacterial kinetics: beta-lactam antibiotics against Escherichia coli. 1994

R C Li, and D E Nix, and J J Schentag
Department of Pharmacy, Faculty of Medicine, Chinese University of Hong Kong, Shatin.

A simple pharmacodynamic model has been developed to describe the bacterial kinetics exhibited by beta-lactam antibiotics. In contrast with previous models that only characterized the early killing phase of a time-kill curve, the present model is capable of simultaneously describing both the killing and regrowth phases. The model relied on the use of both first-order bactericidal and resistance formation rate constants to accurately define the time-dependent changes in the bacterial populations of an antibiotic-treated culture. The concentration dependency of the bactericidal rate constant was further delineated using a saturable-receptor model. Furthermore, an exponential decrease in the resistance formation rate with increasing antibiotic concentrations was demonstrated. The evolving pharmacodynamic model was also explored via computer simulations by perturbing the two governing rate constants. The model was subsequently applied to the description of time-kill data for amoxicillin, penicillin G, and cephalexin against Escherichia coli. The description of amdinocillin's action against E. coli was not as comprehensive because of the existence of a second killing phase. However, this model can be applicable to many classes of antibiotics that display the usual killing and regrowth phases in time-kill studies. The pharmacodynamic model can potentially improve the prediction of bacterial killing and regrowth and foster an improved understanding of complex antimicrobial pharmacodynamics.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004354 Drug Screening Assays, Antitumor Methods of investigating the effectiveness of anticancer cytotoxic drugs and biologic inhibitors. These include in vitro cell-kill models and cytostatic dye exclusion tests as well as in vivo measurement of tumor growth parameters in laboratory animals. Anticancer Drug Sensitivity Tests,Antitumor Drug Screens,Cancer Drug Tests,Drug Screening Tests, Tumor-Specific,Dye Exclusion Assays, Antitumor,Anti-Cancer Drug Screens,Antitumor Drug Screening Assays,Tumor-Specific Drug Screening Tests,Anti Cancer Drug Screens,Anti-Cancer Drug Screen,Antitumor Drug Screen,Cancer Drug Test,Drug Screen, Anti-Cancer,Drug Screen, Antitumor,Drug Screening Tests, Tumor Specific,Drug Screens, Anti-Cancer,Drug Screens, Antitumor,Drug Test, Cancer,Drug Tests, Cancer,Screen, Anti-Cancer Drug,Screen, Antitumor Drug,Screens, Anti-Cancer Drug,Screens, Antitumor Drug,Test, Cancer Drug,Tests, Cancer Drug,Tumor Specific Drug Screening Tests
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000658 Amoxicillin A broad-spectrum semisynthetic antibiotic similar to AMPICILLIN except that its resistance to gastric acid permits higher serum levels with oral administration. Hydroxyampicillin,Actimoxi,Amoxicillin Anhydrous,Amoxicillin Monopotassium Salt,Amoxicillin Monosodium Salt,Amoxicillin Sodium,Amoxicillin Trihydrate,Amoxicillin, (R*)-Isomer,Amoxicilline,Amoxil,Amoxycillin,BRL-2333,Clamoxyl,Clamoxyl G.A.,Clamoxyl Parenteral,Penamox,Polymox,Trimox,Wymox,BRL 2333,BRL2333
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial

Related Publications

R C Li, and D E Nix, and J J Schentag
October 1984, Journal of pharmaceutical sciences,
R C Li, and D E Nix, and J J Schentag
October 1990, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke,
R C Li, and D E Nix, and J J Schentag
May 1990, Antimicrobial agents and chemotherapy,
R C Li, and D E Nix, and J J Schentag
December 1979, Journal of bacteriology,
R C Li, and D E Nix, and J J Schentag
August 2011, European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology,
R C Li, and D E Nix, and J J Schentag
January 1986, Medical microbiology and immunology,
R C Li, and D E Nix, and J J Schentag
December 1992, The Journal of antimicrobial chemotherapy,
R C Li, and D E Nix, and J J Schentag
September 1979, Journal of bacteriology,
R C Li, and D E Nix, and J J Schentag
September 2000, The Journal of antimicrobial chemotherapy,
R C Li, and D E Nix, and J J Schentag
August 2000, The Journal of antimicrobial chemotherapy,
Copied contents to your clipboard!