Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells. 1994

K J Buckler, and R D Vaughan-Jones
University Laboratory of Physiology, University of Oxford.

1. An acid-induced rise in the intracellular calcium concentration ([Ca2+]i) of type I cells is thought to play a vital role in pH/PCO2 chemoreception by the carotid body. In this present study we have investigated the cause of this rise in [Ca2+]i in enzymatically isolated, neonatal rat type I cells. 2. The rise in [Ca2+]i induced by a hypercapnic acidosis was inhibited in Ca(2+)-free media, and by 2 mM Ni2+. Acidosis also increased Mn2+ permeability. The rise in [Ca2+]i is dependent, therefore, upon a Ca2+ influx from the external medium. 3. The acid-induced rise in [Ca2+]i was attenuated by both nicardipine and methoxyverapamil (D600), suggesting a role for L-type Ca2+ channels. 4. Acidosis depolarized type I cells and often (approximately 50% of cells) induced action potentials. These effects coincided with a rise in [Ca2+]i. When membrane depolarization was prevented by a voltage clamp, acidosis failed to evoke a rise in [Ca2+]i. The acid-induced rise in [Ca2+]i is a consequence, therefore, of membrane depolarization. 5. Acidosis decreased the resting membrane conductance of type I cells. The reversal potential of the acid-sensitive current was about -75 mV. 6. A depolarization (30 mM [K+]o)-induced rise in [Ca2+]i was blocked by either the removal of extracellular Ca2+ or the presence of 2 mM Ni2+, and was also substantially inhibited by nicardipine. Under voltage-clamp conditions, [Ca2+]i displayed a bell-shaped dependence on membrane potential. Depolarization raises [Ca2+]i, therefore, through voltage-operated Ca2+ channels. 7. Caffeine (10 mM) induced only a small rise in [Ca2+]i (< 10% of that induced by 30 mM extracellular K+). Ca(2+)-induced Ca2+ release is unlikely, therefore, to contribute greatly to the rise in [Ca2+]i induced by depolarization. 8. Although the replacement of extracellular Na+ with N-methyl-D-glucamine (NMG), but not Li+, inhibited the acid-induced rise in [Ca2+]i, this was due to membrane hyperpolarization and not to the inhibition of Na(+)-Ca2+ exchange or Na(+)-dependent action potentials. 9. The removal of extracellular Na+ (NMG substituted) did not have a significant effect upon the resting [Ca2+]i, and only slowed [Ca2+]i recovery slightly following repolarization from 0 to -60 mV. Therefore, if present, Na(+)-Ca2+ exchange plays only a minor role in [Ca2+]i homeostasis. 10. In summary, in the neonatal rat type I cell, hypercapnic acidosis raises [Ca2+]i through membrane depolarization and voltage-gated Ca2+ entry.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D008536 Meglumine 1-Deoxy-1-(methylamino)-D-glucitol. A derivative of sorbitol in which the hydroxyl group in position 1 is replaced by a methylamino group. Often used in conjunction with iodinated organic compounds as contrast medium. Methylglucamine
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009529 Nicardipine A potent calcium channel blockader with marked vasodilator action. It has antihypertensive properties and is effective in the treatment of angina and coronary spasms without showing cardiodepressant effects. It has also been used in the treatment of asthma and enhances the action of specific antineoplastic agents. Antagonil,Cardene,Cardene I.V.,Cardene SR,Dagan,Flusemide,Lecibral,Lincil,Loxen,Lucenfal,Nicardipine Hydrochloride,Nicardipine LA,Nicardipino Ratiopharm,Nicardipino Seid,Perdipine,Ridene,Vasonase,Y-93,Hydrochloride, Nicardipine,LA, Nicardipine,Y 93,Y93
D009532 Nickel A trace element with the atomic symbol Ni, atomic number 28, and atomic weight 58.69. It is a cofactor of the enzyme UREASE.
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002344 Carotid Body A small cluster of chemoreceptive and supporting cells located near the bifurcation of the internal carotid artery. The carotid body, which is richly supplied with fenestrated capillaries, senses the pH, carbon dioxide, and oxygen concentrations in the blood and plays a crucial role in their homeostatic control. Glomus Caroticum,Bodies, Carotid,Body, Carotid,Caroticum, Glomus,Carotid Bodies
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane

Related Publications

K J Buckler, and R D Vaughan-Jones
June 1995, Sheng li xue bao : [Acta physiologica Sinica],
K J Buckler, and R D Vaughan-Jones
October 1993, Journal of neurophysiology,
K J Buckler, and R D Vaughan-Jones
January 1985, Advances in experimental medicine and biology,
K J Buckler, and R D Vaughan-Jones
July 1993, Brain research,
K J Buckler, and R D Vaughan-Jones
June 1992, Journal of neurophysiology,
K J Buckler, and R D Vaughan-Jones
January 2012, Advances in experimental medicine and biology,
Copied contents to your clipboard!