In vivo voltammetric measurement of evoked extracellular dopamine in the rat basolateral amygdaloid nucleus. 1994

P A Garris, and R M Wightman
Department of Chemistry, University of North Carolina at Chapel Hill 27599-3290.

1. The in vivo measurement of evoked extracellular dopamine was established in the basolateral amygdaloid nucleus (BAN) using fast-scan cyclic voltammetry at carbon-fibre microelectrodes. 2. The identification of evoked extracellular dopamine in the BAN was based on anatomical, electrochemical and pharmacological criteria. Electrochemical and pharmacological evidence indicated that the species was a catecholamine. Mesencephalic sites eliciting overflow and amygdaloid sites supporting overflow correlated well with the mesoamygdaloid dopamine innervation. 3. Marked differences in the dynamics and magnitude of evoked dopamine overflow were observed in the BAN, caudate-putamen and amygdalo-striatal transition area. The results underscore the importance of making spatially resolved measurements of extracellular dopamine in the amygdala. 4. Mesoamygdaloid dopamine neurons have similar release characteristics as mesostriatal dopamine neurons but share with mesoprefrontal cortical dopamine neurons the ability to use a greater percentage of intraneuronal dopamine stores for release.

UI MeSH Term Description Entries
D008297 Male Males
D008781 Methyltyrosines A group of compounds that are methyl derivatives of the amino acid TYROSINE.
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D000679 Amygdala Almond-shaped group of basal nuclei anterior to the INFERIOR HORN OF THE LATERAL VENTRICLE of the TEMPORAL LOBE. The amygdala is part of the limbic system. Amygdaloid Body,Amygdaloid Nuclear Complex,Amygdaloid Nucleus,Archistriatum,Corpus Amygdaloideum,Intercalated Amygdaloid Nuclei,Massa Intercalata,Nucleus Amygdalae,Amygdalae, Nucleus,Amygdaloid Bodies,Amygdaloid Nuclear Complices,Amygdaloid Nuclei, Intercalated,Amygdaloid Nucleus, Intercalated,Amygdaloideum, Corpus,Amygdaloideums, Corpus,Archistriatums,Complex, Amygdaloid Nuclear,Complices, Amygdaloid Nuclear,Corpus Amygdaloideums,Intercalata, Massa,Intercalatas, Massa,Intercalated Amygdaloid Nucleus,Massa Intercalatas,Nuclear Complex, Amygdaloid,Nuclear Complices, Amygdaloid,Nuclei, Intercalated Amygdaloid,Nucleus, Amygdaloid,Nucleus, Intercalated Amygdaloid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P A Garris, and R M Wightman
April 1991, Acta physiologica Scandinavica,
P A Garris, and R M Wightman
October 1996, Synapse (New York, N.Y.),
P A Garris, and R M Wightman
November 1984, The Journal of comparative neurology,
P A Garris, and R M Wightman
June 2002, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society,
Copied contents to your clipboard!