Effects of pH and inorganic phosphate on rigor tension in chemically skinned rat ventricular trabeculae. 1994

G L Smith, and D S Steele
Institute of Physiology, University of Glasgow.

1. Ventricular trabeculae from rat heart were chemically skinned with Triton X-100, which disrupts all cellular membranes including the sarcoplasmic reticulum. In the effective absence of Ca2+ (10(-9) M), trabeculae developed a maintained rigor contracture when ATP was withdrawn from the bathing solution. 2. The final level of tension obtained following withdrawal of ATP was dependent upon the pH of the bathing solution during development of rigor. Rigor tension at pH 5.5 was 10.1 +/- 0.9% (n = 8, mean +/- S.E.M.) of that at pH 7.0. Bathing the preparation in alkaline solution increased rigor force. At pH 8.0, rigor force increased to 218 +/- 6.7% (n = 4) of control responses developed at pH 7.0. The rate of development of rigor tension increased as the pH of the bathing solution was increased. Once established, rigor tension was unaffected by subsequent changes in pH. These effects of pH were fully reversible within the range 5.5-8.0. 3. The final level of rigor tension was slightly reduced when inorganic phosphate (P(i)) was included in the bathing solution prior to withdrawal of ATP. P(i) concentrations of 10, 20 and 30 mM reduced rigor tension to 87 +/- 2, 83 +/- 3 and 82 +/- 4% respectively. There was no significant effect of P(i) on the rate of development of rigor. The effect of P(i) at pH 6.0 was not significantly different from that observed at the control pH of 7.0. 4. These results suggest that the fall of intracellular pH and, to a lesser extent, the rise in [P(i)] that occurs during ischaemia will partially inhibit the development of a rigor contracture.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D008297 Male Males
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012298 Rigor Mortis Muscular rigidity which develops in the cadaver usually from 4 to 10 hours after death and lasts 3 or 4 days. Mortis, Rigor

Related Publications

G L Smith, and D S Steele
January 1987, Pflugers Archiv : European journal of physiology,
G L Smith, and D S Steele
December 1995, European journal of pharmacology,
G L Smith, and D S Steele
December 1997, Cardiovascular research,
Copied contents to your clipboard!