Interspecific sequence comparison of the muscle-myosin heavy-chain genes from Drosophila hydei and Drosophila melanogaster. 1994

K Miedema, and H Harhangi, and S Mentzel, and M Wilbrink, and A Akhmanova, and M Hooiveld, and P Bindels, and W Hennig
Department of Molecular and Developmental Genetics, Faculty of Sciences, Catholic University of Nijmegen, Toernooiveld, The Netherlands.

The muscle-myosin heavy-chain (mMHC) gene of Drosophila hydei has been sequenced completely (size 23.3 kb). The sequence comparison with the D. melanogaster mMHC gene revealed that the exon-intron pattern is identical. The protein coding regions show a high degree of conservation (97%). The alternatively spliced exons (3a-b, 7a-d, 9a-c, 11a-e, and 15a-b) display more variations in the number of nonsynonymous and synonymous substitutions than the common exons (2, 4, 5, 6, 8, 10, 12, 13, 14, 16, 17, and 19). The base composition at synonymous sites of fourfold degenerate codons (third position) is not biased in the alternative exons. In the common exons there exists a bias for C and against A. These findings imply that the alternative exons of the Drosophila mMHC gene evolve at a different, in several cases higher, rate than the common ones. The 5' splice junctions and 5' and 3' untranslated regions show a high level of similarity, indicating a functional constraint on these sequences. The intron regions vary considerably in length within one species, but the corresponding introns are very similar in length between the two species and all contain stretches of sequence similarity. A particular example is the first intron, which contains multiple regions of similarity. In the conserved regions of intron 12 (head-tail border) sequences were found which have the potential to direct another smaller mMHC transcript.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015342 DNA Probes Species- or subspecies-specific DNA (including COMPLEMENTARY DNA; conserved genes, whole chromosomes, or whole genomes) used in hybridization studies in order to identify microorganisms, to measure DNA-DNA homologies, to group subspecies, etc. The DNA probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the DNA probe include the radioisotope labels 32P and 125I and the chemical label biotin. The use of DNA probes provides a specific, sensitive, rapid, and inexpensive replacement for cell culture techniques for diagnosing infections. Chromosomal Probes,DNA Hybridization Probe,DNA Probe,Gene Probes, DNA,Conserved Gene Probes,DNA Hybridization Probes,Whole Chromosomal Probes,Whole Genomic DNA Probes,Chromosomal Probes, Whole,DNA Gene Probes,Gene Probes, Conserved,Hybridization Probe, DNA,Hybridization Probes, DNA,Probe, DNA,Probe, DNA Hybridization,Probes, Chromosomal,Probes, Conserved Gene,Probes, DNA,Probes, DNA Gene,Probes, DNA Hybridization,Probes, Whole Chromosomal

Related Publications

K Miedema, and H Harhangi, and S Mentzel, and M Wilbrink, and A Akhmanova, and M Hooiveld, and P Bindels, and W Hennig
February 2007, Gene expression patterns : GEP,
K Miedema, and H Harhangi, and S Mentzel, and M Wilbrink, and A Akhmanova, and M Hooiveld, and P Bindels, and W Hennig
April 1990, Chromosoma,
K Miedema, and H Harhangi, and S Mentzel, and M Wilbrink, and A Akhmanova, and M Hooiveld, and P Bindels, and W Hennig
November 1992, The Journal of cell biology,
K Miedema, and H Harhangi, and S Mentzel, and M Wilbrink, and A Akhmanova, and M Hooiveld, and P Bindels, and W Hennig
May 2003, Genetics,
K Miedema, and H Harhangi, and S Mentzel, and M Wilbrink, and A Akhmanova, and M Hooiveld, and P Bindels, and W Hennig
July 1989, Molecular and cellular biology,
K Miedema, and H Harhangi, and S Mentzel, and M Wilbrink, and A Akhmanova, and M Hooiveld, and P Bindels, and W Hennig
June 1995, Genome,
K Miedema, and H Harhangi, and S Mentzel, and M Wilbrink, and A Akhmanova, and M Hooiveld, and P Bindels, and W Hennig
October 2011, Journal of molecular evolution,
K Miedema, and H Harhangi, and S Mentzel, and M Wilbrink, and A Akhmanova, and M Hooiveld, and P Bindels, and W Hennig
March 1986, Proceedings of the National Academy of Sciences of the United States of America,
K Miedema, and H Harhangi, and S Mentzel, and M Wilbrink, and A Akhmanova, and M Hooiveld, and P Bindels, and W Hennig
October 1986, The Journal of cell biology,
K Miedema, and H Harhangi, and S Mentzel, and M Wilbrink, and A Akhmanova, and M Hooiveld, and P Bindels, and W Hennig
July 1991, Journal of biochemistry,
Copied contents to your clipboard!