Severity of mutation in the phenylalanine hydroxylase gene influences phenylalanine metabolism in phenylketonuria and hyperphenylalaninaemia heterozygotes. 1994

E Svensson, and L Iselius, and L Hagenfeldt
Department of Clinical Chemistry, Huddinge University Hospital, Sweden.

We examined whether the degree of residual activity from the mutant phenylalanine hydroxylase (PAH) allele affected phenylalanine metabolism in heterozygotes for phenylketonuria (PKU) or non-PKU hyperphenylalaninaemia (HPA). Discriminant analysis was carried out to find the function of fasting plasma concentrations of phenylalanine (PHE) and tyrosine (TYR) that best separated carriers from non-carriers. This function (0.103TYR -0.214-PHECORR -4.499) was subsequently used as the dependent variable, with the in vitro activity of the expressed mutant PAH as the independent variable, in a regression analysis performed on heterozygotes for mutations that had been studied in a eukaryotic cell expression system. This analysis showed a significant correlation (r = 0.40, n = 140, p < 0.001), although there was a wide spread of values within each of the two major groups of carriers and a considerable overlap between the groups. We conclude that the severity of the mutation, as determined by in vitro expression analysis, in the mutant PAH gene is reflected in the biochemical phenotype of heterozygotes. This result emphasizes the relevance of the cell expression system used for establishing the relative severities of most mutations at the PAH locus. Differences in the activities from the carried mutant PAH allele on phenylalanine metabolism in heterozygotes are, however, small compared to the activity from the normal PAH allele and are easily obscured by other factors leading to inter- or intra-individual variation in phenylalanine metabolism. Fasting plasma concentrations of phenylalanine and tyrosine thus can not be used to predict the severity of the carried PAH mutation in individual PKU or HPA heterozygotes.

UI MeSH Term Description Entries
D008297 Male Males
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D010651 Phenylalanine Hydroxylase An enzyme of the oxidoreductase class that catalyzes the formation of L-TYROSINE, dihydrobiopterin, and water from L-PHENYLALANINE, tetrahydrobiopterin, and oxygen. Deficiency of this enzyme may cause PHENYLKETONURIAS and PHENYLKETONURIA, MATERNAL. EC 1.14.16.1. Phenylalanine 4-Hydroxylase,Phenylalanine 4-Monooxygenase,4-Hydroxylase, Phenylalanine,4-Monooxygenase, Phenylalanine,Hydroxylase, Phenylalanine,Phenylalanine 4 Hydroxylase,Phenylalanine 4 Monooxygenase
D010661 Phenylketonurias A group of autosomal recessive disorders marked by a deficiency of the hepatic enzyme PHENYLALANINE HYDROXYLASE or less frequently by reduced activity of DIHYDROPTERIDINE REDUCTASE (i.e., atypical phenylketonuria). Classical phenylketonuria is caused by a severe deficiency of phenylalanine hydroxylase and presents in infancy with developmental delay; SEIZURES; skin HYPOPIGMENTATION; ECZEMA; and demyelination in the central nervous system. (From Adams et al., Principles of Neurology, 6th ed, p952). Biopterin Deficiency,Dihydropteridine Reductase Deficiency Disease,Hyperphenylalaninemia, Non-Phenylketonuric,Phenylalanine Hydroxylase Deficiency Disease,BH4 Deficiency,DHPR Deficiency,Deficiency Disease, Dihydropteridine Reductase,Deficiency Disease, Phenylalanine Hydroxylase,Deficiency Disease, Phenylalanine Hydroxylase, Severe,Dihydropteridine Reductase Deficiency,Folling Disease,Folling's Disease,HPABH4C,Hyperphenylalaninaemia,Hyperphenylalaninemia Caused by a Defect in Biopterin Metabolism,Hyperphenylalaninemia, BH4-Deficient, C,Hyperphenylalaninemia, Tetrahydrobiopterin-Deficient, Due To DHPR Deficiency,Non-Phenylketonuric Hyperphenylalaninemia,Oligophrenia Phenylpyruvica,PAH Deficiency,PKU, Atypical,Phenylalanine Hydroxylase Deficiency,Phenylalanine Hydroxylase Deficiency Disease, Severe,Phenylketonuria,Phenylketonuria I,Phenylketonuria II,Phenylketonuria Type 2,Phenylketonuria, Atypical,Phenylketonuria, Classical,QDPR Deficiency,Quinoid Dihydropteridine Reductase Deficiency,Tetrahydrobiopterin Deficiency,Atypical PKU,Atypical Phenylketonuria,Biopterin Deficiencies,Classical Phenylketonuria,Deficiency, BH4,Deficiency, Biopterin,Deficiency, DHPR,Deficiency, Dihydropteridine Reductase,Deficiency, PAH,Deficiency, Phenylalanine Hydroxylase,Deficiency, QDPR,Deficiency, Tetrahydrobiopterin,Disease, Folling,Disease, Folling's,Hyperphenylalaninemia, Non Phenylketonuric,Non Phenylketonuric Hyperphenylalaninemia,Non-Phenylketonuric Hyperphenylalaninemias
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005260 Female Females
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes

Related Publications

E Svensson, and L Iselius, and L Hagenfeldt
June 1998, Journal of inherited metabolic disease,
E Svensson, and L Iselius, and L Hagenfeldt
June 1998, Journal of inherited metabolic disease,
E Svensson, and L Iselius, and L Hagenfeldt
January 2002, Acta paediatrica (Oslo, Norway : 1992),
E Svensson, and L Iselius, and L Hagenfeldt
January 1968, Lancet (London, England),
E Svensson, and L Iselius, and L Hagenfeldt
February 1991, Molecular biology & medicine,
E Svensson, and L Iselius, and L Hagenfeldt
April 1967, Lancet (London, England),
E Svensson, and L Iselius, and L Hagenfeldt
April 1977, Lancet (London, England),
E Svensson, and L Iselius, and L Hagenfeldt
January 1982, Journal of inherited metabolic disease,
E Svensson, and L Iselius, and L Hagenfeldt
January 2018, Medical journal of the Islamic Republic of Iran,
E Svensson, and L Iselius, and L Hagenfeldt
January 1981, Journal of inherited metabolic disease,
Copied contents to your clipboard!