Dual channel confocal laser scanning microscopy of lucifer yellow-microinjected human brain cells combined with Texas red immunofluorescence. 1994

P V Belichenko, and A Dahlström
Brain Research Institute, Russian Academy of Medical Sciences, Moscow.

A method for visualization of individual human brain cells and their dendritic extensions in combination with immunofluorescence is described. Microinjection of Lucifer Yellow was used to reveal the dendritic morphology of cortical brain cells. Indirect immunofluorescence with Texas Red as label was used to investigate the distribution of 3 different groups of immunogens: enzymes (monoamine oxidase A and B), receptors (beta-adrenoceptor protein), and synaptic vesicle proteins (synapsin I and synaptophysin) in each cortical slice. A dual-channel confocal laser scanning microscope with an argon/krypton laser was used for imaging these double-stained fluorescent specimens. Lucifer Yellow and Texas Red were recorded simultaneously or separately, taking advantage of the different activating lines (488 lambda and 568 lambda) of the laser and using the two filter blocks (K1 and K2) supplied with the instrument (BioRad MRC-600) for recording the emission of either fluorophore. Using this technique we have demonstrated the localization of immunoreactive material in relation to the dendritic morphology of cortical cells.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D008995 Monoamine Oxidase An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D010865 Pilot Projects Small-scale tests of methods and procedures to be used on a larger scale if the pilot study demonstrates that these methods and procedures can work. Pilot Studies,Pilot Study,Pilot Project,Project, Pilot,Projects, Pilot,Studies, Pilot,Study, Pilot
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D005260 Female Females

Related Publications

P V Belichenko, and A Dahlström
September 1999, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
P V Belichenko, and A Dahlström
April 1995, Laboratory investigation; a journal of technical methods and pathology,
P V Belichenko, and A Dahlström
January 1993, Methods in cell biology,
P V Belichenko, and A Dahlström
January 2002, Methods in cell biology,
P V Belichenko, and A Dahlström
January 2013, Methods in molecular biology (Clifton, N.J.),
P V Belichenko, and A Dahlström
January 2019, Methods in molecular biology (Clifton, N.J.),
P V Belichenko, and A Dahlström
December 2006, Ultrasonics,
P V Belichenko, and A Dahlström
December 2019, Biomedical optics express,
Copied contents to your clipboard!