We proposed a mathematical model to describe the early filling process of the left ventricle and applied the model to in vivo experiments. The solution of a second-order differential equation indicated that the pressure difference between the left atrium and ventricle during ventricular filling (PD) could be explained by a transient response, i.e. decremental oscillation, in an LCR circuit. Thereafter, we analysed the sequence of PD during vagal stimulation with two catheter-tip manometers in 12 anaesthetised dogs and evaluated changes in the parameters of the system under various haemodynamic conditions. The values of omega n and zeta were quite stable among beats within an episode of vagal stimulation, between episodes and even among dogs, despite the changes in haemodynamic variables. Pericardiotomy and partial discommunication of the mitral valve with the left ventricular free wall by cutting the mitral chordal tendons decreased omega n and increased zeta, mainly because of the increase in CLV. Occlusion of the coronary vascular beds with large numbers of microspheres increased omega n and decreased zeta, mainly because of the decrease in CLV. Mitral obstruction with an inflated balloon (increase in R) abolished the oscillatory changes and produced an exponential decay sequence of PD. In conclusion, both the logical and experimental approaches indicated that the sequence of PD could be considered as decremental oscillation in the LCR circuit and the parameters omega n and zeta could be good indices of the diastolic property of the left ventricle.