Correlation of gene transcription with the time of initiation of chromosome replication in Escherichia coli. 1993

P W Theisen, and J E Grimwade, and A C Leonard, and J A Bogan, and C E Helmstetter
Department of Biological Sciences, Florida Institute of Technology, Melbourne 32901.

Transcriptional levels of the Escherichia coli mioC and gidA genes, which flank the chromosomal origin of replication (oriC) and the dnaA gene, were correlated with the time of initiation of chromosome replication. The transcripts were measured either in dnaC2(ts) mutants that had been aligned for initiation of chromosome replication by a temperature shift or in synchronous cultures of cells obtained using the baby machine technique. In both types of experiments, mioC transcription was inhibited prior to initiation of chromosome replication and resumed several minutes after initiation. Conversely, gidA and dnaA transcription were both inhibited after initiation of replication, coincident with the period of hemimethylation of oriC DNA. It is proposed that mioC transcription prevents initiation of chromosome replication, and must terminate before replication can begin. It is further proposed that the eclipse period between rounds of replication, i.e. the minimum interval between successive initiations, encompasses the time required to methylate GATC sequences in newly replicated oriC plus the time required to terminate mioC transcription. Conversely, the active transcription of gidA and dnaA prior to initiation is consistent with their positive effects on initiation, and their shutdown after initiation could serve to limit premature reinitiation.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

P W Theisen, and J E Grimwade, and A C Leonard, and J A Bogan, and C E Helmstetter
January 1997, Journal of bacteriology,
P W Theisen, and J E Grimwade, and A C Leonard, and J A Bogan, and C E Helmstetter
February 1988, Journal of bacteriology,
P W Theisen, and J E Grimwade, and A C Leonard, and J A Bogan, and C E Helmstetter
August 1992, Journal of molecular biology,
P W Theisen, and J E Grimwade, and A C Leonard, and J A Bogan, and C E Helmstetter
January 1992, Molecular & general genetics : MGG,
P W Theisen, and J E Grimwade, and A C Leonard, and J A Bogan, and C E Helmstetter
August 1987, Journal of bacteriology,
P W Theisen, and J E Grimwade, and A C Leonard, and J A Bogan, and C E Helmstetter
June 1996, Journal of bacteriology,
P W Theisen, and J E Grimwade, and A C Leonard, and J A Bogan, and C E Helmstetter
July 1980, Journal of bacteriology,
P W Theisen, and J E Grimwade, and A C Leonard, and J A Bogan, and C E Helmstetter
July 1986, The EMBO journal,
P W Theisen, and J E Grimwade, and A C Leonard, and J A Bogan, and C E Helmstetter
November 1986, The EMBO journal,
P W Theisen, and J E Grimwade, and A C Leonard, and J A Bogan, and C E Helmstetter
July 1978, Journal of molecular biology,
Copied contents to your clipboard!