Effect of excitatory amino acid receptor agonists on secretion of growth hormone as assessed by the reverse hemolytic plaque assay. 1994

M Niimi, and M Sato, and K Murao, and J Takahara, and K Kawanishi
Department of Clinical Laboratory, Kagawa Medical School, Japan.

Recent findings indicate that excitatory amino acids (EAAs) can modulate growth hormone (GH) secretion in several mammalian species in vivo and in vitro. In this study, we examined the effects of EAA receptor antagonists [N-methyl-D,L-aspartate (NMDA), kainic acid, L-glutamate] on GH secretion by the reverse hemolytic plaque assay (RHPA). Anterior pituitary cells of adult male Sprague-Dawley rats were enzymatically dispersed and subjected to RHPA. EAA receptor agonists increased the mean plaque area in a dose-dependent manner: the maximal increase was observed at 10 microM and increased the fraction of somatotrophs forming large plaques. NMDA (10 microM) did not increase the mean plaque area in the presence of the NMDA receptor antagonists 10 microM AP-7 and 10 microM MK-801. Coincubation of kainic acid with the non-NMDA receptor antagonist CNQX blocked the kainic-acid-stimulated increase in GH secretion. The addition of MK-801, AP-7 or CNQX to glutamate caused a partial reduction of the mean plaque area. Ten micromoles per liter glutamate with 10 nM GH-releasing hormone (GHRH) produced an additive effect on GHRH-induced GH release. Somatostatin suppressed the stimulatory action of glutamate. We speculate that glutamate plays a role in the regulation of GH secretion.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D006462 Hemolytic Plaque Technique A method to identify and enumerate cells that are synthesizing ANTIBODIES against ANTIGENS or HAPTENS conjugated to sheep RED BLOOD CELLS. The sheep red blood cells surrounding cells secreting antibody are lysed by added COMPLEMENT producing a clear zone of HEMOLYSIS. (From Illustrated Dictionary of Immunology, 3rd ed) Jerne's Plaque Technique,Hemolytic Plaque Technic,Jerne's Plaque Technic,Hemolytic Plaque Technics,Hemolytic Plaque Techniques,Jerne Plaque Technic,Jerne Plaque Technique,Jernes Plaque Technic,Jernes Plaque Technique,Plaque Technic, Hemolytic,Plaque Technic, Jerne's,Plaque Technics, Hemolytic,Plaque Technique, Hemolytic,Plaque Technique, Jerne's,Plaque Techniques, Hemolytic,Technic, Hemolytic Plaque,Technic, Jerne's Plaque,Technics, Hemolytic Plaque,Technique, Hemolytic Plaque,Technique, Jerne's Plaque,Techniques, Hemolytic Plaque
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone
D013006 Growth Hormone A polypeptide that is secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Growth hormone, also known as somatotropin, stimulates mitosis, cell differentiation and cell growth. Species-specific growth hormones have been synthesized. Growth Hormone, Recombinant,Pituitary Growth Hormone,Recombinant Growth Hormone,Somatotropin,Somatotropin, Recombinant,Growth Hormone, Pituitary,Growth Hormones Pituitary, Recombinant,Pituitary Growth Hormones, Recombinant,Recombinant Growth Hormones,Recombinant Pituitary Growth Hormones,Recombinant Somatotropins,Somatotropins, Recombinant,Growth Hormones, Recombinant,Recombinant Somatotropin
D013007 Growth Hormone-Releasing Hormone A peptide of 44 amino acids in most species that stimulates the release and synthesis of GROWTH HORMONE. GHRF (or GRF) is synthesized by neurons in the ARCUATE NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, GHRF stimulates GH release by the SOMATOTROPHS in the PITUITARY GLAND. Growth Hormone-Releasing Factor,Somatocrinin,Somatotropin-Releasing Factor 44,Somatotropin-Releasing Hormone,GHRH 1-44,GRF 1-44,Growth Hormone-Releasing Factor 44,Human Pancreatic Growth Hormone-Releasing Factor,Somatoliberin,hpGRF 44,Growth Hormone Releasing Factor,Growth Hormone Releasing Factor 44,Growth Hormone Releasing Hormone,Somatotropin Releasing Factor 44,Somatotropin Releasing Hormone
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D016202 N-Methylaspartate An amino acid that, as the D-isomer, is the defining agonist for the NMDA receptor subtype of glutamate receptors (RECEPTORS, NMDA). N-Methyl-D-aspartate,NMDA,N-Methyl-D-aspartic Acid,Acid, N-Methyl-D-aspartic,N Methyl D aspartate,N Methyl D aspartic Acid,N Methylaspartate

Related Publications

M Niimi, and M Sato, and K Murao, and J Takahara, and K Kawanishi
February 1990, Endocrinology,
M Niimi, and M Sato, and K Murao, and J Takahara, and K Kawanishi
October 1989, Biology of reproduction,
M Niimi, and M Sato, and K Murao, and J Takahara, and K Kawanishi
December 1992, Acta endocrinologica,
M Niimi, and M Sato, and K Murao, and J Takahara, and K Kawanishi
January 1989, Endocrinology,
M Niimi, and M Sato, and K Murao, and J Takahara, and K Kawanishi
April 1991, Biology of reproduction,
M Niimi, and M Sato, and K Murao, and J Takahara, and K Kawanishi
April 1993, Surgery,
M Niimi, and M Sato, and K Murao, and J Takahara, and K Kawanishi
January 1989, The Journal of clinical endocrinology and metabolism,
M Niimi, and M Sato, and K Murao, and J Takahara, and K Kawanishi
November 1993, European journal of pharmacology,
M Niimi, and M Sato, and K Murao, and J Takahara, and K Kawanishi
December 1993, Journal of neuroendocrinology,
M Niimi, and M Sato, and K Murao, and J Takahara, and K Kawanishi
August 1980, Blut,
Copied contents to your clipboard!