Evaluation of monoaminergic neurotransmitters in the rat striatum during varied global cerebral ischemia. 1994

T Kondoh, and K Korosue, and S H Lee, and R C Heros, and W C Low
Department of Neurosurgery, University of Minnesota Medical School, Minneapolis.

Neurotransmitter release during cerebral ischemia has been extensively studied and is thought to play a key role in excitotoxic neuronal death. The changes in neurotransmitter release and its metabolism may reflect changes in cellular metabolism during ischemia. The purpose of this study is to assess alterations in extracellular dopamine and serotonin and their metabolites under varied degrees of ischemia in rat striatum to elucidate the pathophysiology of cerebral ischemia. Twenty rats were used to induce varied forebrain ischemia by means of bilateral common carotid artery occlusion along with hemorrhagic hypotension. Cerebral blood flow (CBF) in the striatum was measured every 40 minutes by methods of hydrogen clearance and maintained within certain ranges for 6 hours. Dopamine, serotonin, and their metabolites were measured every 20 minutes by in vivo microdialysis. Varying degrees of ischemia were obtained, ranging from 9.4 to 81.3% of control CBF. The animals were divided into three groups according to CBF levels measured 20 minutes after the induction of ischemia. In the mild ischemia group (n = 5), CBF ranged from 65 to 88% of baseline levels and resulted in only a slight increase of dopamine. In the moderate ischemia group (n = 10), CBF ranged from 21 to 48% of baseline levels and resulted in transient increases of dopamine (24-fold) and serotonin (5-fold). In the severe ischemia group (n = 5), CBF was below 14% of baseline levels and resulted in marked increases in dopamine (462-fold) and serotonin (225-fold). These alterations remained elevated for 3 hours.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001925 Brain Damage, Chronic A condition characterized by long-standing brain dysfunction or damage, usually of three months duration or longer. Potential etiologies include BRAIN INFARCTION; certain NEURODEGENERATIVE DISORDERS; CRANIOCEREBRAL TRAUMA; ANOXIA, BRAIN; ENCEPHALITIS; certain NEUROTOXICITY SYNDROMES; metabolic disorders (see BRAIN DISEASES, METABOLIC); and other conditions. Encephalopathy, Chronic,Chronic Encephalopathy,Chronic Brain Damage
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D016923 Cell Death The termination of the cell's ability to carry out vital functions such as metabolism, growth, reproduction, responsiveness, and adaptability. Death, Cell

Related Publications

T Kondoh, and K Korosue, and S H Lee, and R C Heros, and W C Low
July 2014, Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology,
T Kondoh, and K Korosue, and S H Lee, and R C Heros, and W C Low
January 2014, Journal of Asian natural products research,
T Kondoh, and K Korosue, and S H Lee, and R C Heros, and W C Low
January 1997, Acupuncture & electro-therapeutics research,
T Kondoh, and K Korosue, and S H Lee, and R C Heros, and W C Low
February 1992, Stroke,
T Kondoh, and K Korosue, and S H Lee, and R C Heros, and W C Low
March 1993, Brain research,
T Kondoh, and K Korosue, and S H Lee, and R C Heros, and W C Low
March 2008, Stroke,
T Kondoh, and K Korosue, and S H Lee, and R C Heros, and W C Low
October 1989, No to shinkei = Brain and nerve,
T Kondoh, and K Korosue, and S H Lee, and R C Heros, and W C Low
March 1994, Journal of neurochemistry,
T Kondoh, and K Korosue, and S H Lee, and R C Heros, and W C Low
April 1998, Magnetic resonance in medicine,
T Kondoh, and K Korosue, and S H Lee, and R C Heros, and W C Low
January 1986, Journal de pharmacologie,
Copied contents to your clipboard!