Growth-promoting interactions between the murine neocortex and thalamus in organotypic co-cultures. 1994

S Rennie, and R B Lotto, and D J Price
Department of Physiology, University Medical School, Edinburgh, U.K.

The aim of this study was to assess whether developing cerebral cortex produces diffusible factors that can affect the growth of thalamic cells and, if so, what the role of these factors might be during the formation of thalamocortical connections. We studied interactions between cultured organotypic explants from mice maintained in defined serum-free medium. First, we cultured explants of embryonic dorsolateral thalamus in isolation from any other tissue; after culture, these explants were viewed intact and then sectioned. We estimated the numbers of healthy and pyknotic cells before and after culture, and the rates of mitosis in the explants during culture (using bromodeoxyuridine). Based on these data, we concluded that the majority of cells in the thalamic explants survived, although significant numbers of pyknotic cells did accumulate. Thalamic explants extended either very few or no neurites when cultured alone. We then cultured explants of embryonic thalamus near to explants from other tissues. A gap was always maintained between the explants, and we measured the length and density of neurite outgrowth from each thalamic explant. Slices of embryonic cortex promoted a small but significant increase in the amount of growth from thalamic explants. Postnatal cortex stimulated much more profuse neurite outgrowth; postnatal cerebellum had less of an effect, and postnatal medulla or liver had none. We showed that there was significantly more outgrowth from thalamic explants cultured in medium that had been preconditioned with cortical slices than from thalamic explants cultured in control medium, confirming that diffusible factors were produced by the cortex. The survival and mitotic rates of thalamic cells were unaffected by co-culture with the cortex. We conclude that the developing cortex releases diffusible factors that stimulate the growth of thalamic neurites and that other regions of the brain may also release the same substance(s). The lack of a specific source of thalamic growth promoting factor(s) argues against a role for these factors in guiding thalamic axons to specific targets; indeed, we were unable to demonstrate any chemotropic guidance of thalamic axons towards cortical explants in collagen gels. Since postnatal cortex has a more potent stimulatory effect than prenatal cortex, it seems possible that, in vivo, the cortical-derived factors act mainly on thalamocortical axons that have located their targets and are in the process of arborizing and refining their connections.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

S Rennie, and R B Lotto, and D J Price
December 2004, Neuroreport,
S Rennie, and R B Lotto, and D J Price
March 2002, Journal of neurotrauma,
S Rennie, and R B Lotto, and D J Price
January 2008, Investigative ophthalmology & visual science,
S Rennie, and R B Lotto, and D J Price
January 1991, Experimental brain research,
S Rennie, and R B Lotto, and D J Price
November 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S Rennie, and R B Lotto, and D J Price
January 1986, Clinical neuropharmacology,
S Rennie, and R B Lotto, and D J Price
December 1999, Brain research. Brain research protocols,
S Rennie, and R B Lotto, and D J Price
January 1996, Brain research. Molecular brain research,
S Rennie, and R B Lotto, and D J Price
January 1989, The European journal of neuroscience,
Copied contents to your clipboard!