Ultra-slow voltage-dependent inactivation of the calcium current in guinea-pig and ferret ventricular myocytes. 1994

M R Boyett, and H Honjo, and S M Harrison, and W J Zang, and M S Kirby
Department of Physiology, University of Leeds, UK.

L-type Ca2+ current, iCa, has been recorded in guinea-pig ventricular myocytes at 36 degrees C using the whole cell patch clamp technique. Intracellular Ca2+ was buffered with ethylenebis(oxonitrilo)tetraacetate (EGTA). An increase in the rate of stimulation from 0.5 to 3 Hz resulted in an abrupt decrease in iCa in the first beat at the high rate, followed by a progressive decrease (tau approx. 7 s) over the next 30 s. The changes were not the result of Ca(2+)-dependent inactivation, because similar changes occurred with either Ba2+ or Na+ as the charge carrier. During 20-s voltage clamp pulses there was an ultra-slow phase of inactivation of Ba2+ or Na+ current through the Ca2+ channel (tau approx. 6 s at 0 mV). This was confirmed by applying test pulses after conditioning pulses of different duration: the Ba2+ current during the test pulse decreased progressively when the duration of the conditioning pulse was increased progressively to 20 s. Ultra-slow inactivation of Ba2+ current was voltage dependent and increased monotonically at more positive potentials. Recovery of Ba2+ current from ultra-slow inactivation occurred with a time constant of 3.7 s at -40 mV and 0.7 s at -80 mV. The gradual decrease in iCa on increasing the rate to 3 Hz may have been the result of the development of ultra-slow voltage-dependent inactivation.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D005289 Ferrets Semidomesticated variety of European polecat much used for hunting RODENTS and/or RABBITS and as a laboratory animal. It is in the subfamily Mustelinae, family MUSTELIDAE. Domestic Polecat,Domestic Polecats,European Polecat,European Polecats,Ferret,Mustela putorius,Mustela putorius furo,Polecat, Domestic,Polecat, European,Polecats, Domestic,Polecats, European
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M R Boyett, and H Honjo, and S M Harrison, and W J Zang, and M S Kirby
September 2004, Acta pharmacologica Sinica,
M R Boyett, and H Honjo, and S M Harrison, and W J Zang, and M S Kirby
January 2014, Chinese journal of natural medicines,
M R Boyett, and H Honjo, and S M Harrison, and W J Zang, and M S Kirby
December 2002, The Journal of physiology,
M R Boyett, and H Honjo, and S M Harrison, and W J Zang, and M S Kirby
December 1988, The Journal of pharmacology and experimental therapeutics,
M R Boyett, and H Honjo, and S M Harrison, and W J Zang, and M S Kirby
January 2002, Journal of anesthesia,
M R Boyett, and H Honjo, and S M Harrison, and W J Zang, and M S Kirby
June 2002, The Journal of physiology,
M R Boyett, and H Honjo, and S M Harrison, and W J Zang, and M S Kirby
May 1986, Pflugers Archiv : European journal of physiology,
M R Boyett, and H Honjo, and S M Harrison, and W J Zang, and M S Kirby
July 1988, The Journal of pharmacology and experimental therapeutics,
M R Boyett, and H Honjo, and S M Harrison, and W J Zang, and M S Kirby
September 1990, The Journal of physiology,
Copied contents to your clipboard!