DNA length, bending, and twisting constraints on IS50 transposition. 1994

Goryshin IYu, and Y V Kil, and W S Reznikoff
Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison 53706-1569.

Transposition is a multistep process in which a transposable element DNA sequence moves from its original genetic location to a new site. Early steps in this process include the formation of a transposition complex in which the end sequences of the transposable element are brought together in a structurally precise fashion through the action of the element-encoded transposase protein and the cleavage of the element free from the adjoining DNA. If transposition complex formation must precede DNA cleavage (or nicking), then changing the length of the donor DNA between closely spaced ends should have dramatic effects on the frequency of the transposition. This question has been examined by studying the effects of altering donor DNA length on IS50 transposition. Donor DNA < or = 64 bp severely impaired transposition. Donor DNA > or = 200 bp demonstrated high transposition frequencies with only modest length dependencies. Constructs with donor DNA lengths between 66 and 174 bp demonstrated a dramatic periodic effect on transposition (periodicity approximately 10.5 bp).

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009713 Nucleotidyltransferases A class of enzymes that transfers nucleotidyl residues. EC 2.7.7. Nucleotidyltransferase
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005583 Fourier Analysis Analysis based on the mathematical function first formulated by Jean-Baptiste-Joseph Fourier in 1807. The function, known as the Fourier transform, describes the sinusoidal pattern of any fluctuating pattern in the physical world in terms of its amplitude and its phase. It has broad applications in biomedicine, e.g., analysis of the x-ray crystallography data pivotal in identifying the double helical nature of DNA and in analysis of other molecules, including viruses, and the modified back-projection algorithm universally used in computerized tomography imaging, etc. (From Segen, The Dictionary of Modern Medicine, 1992) Fourier Series,Fourier Transform,Analysis, Cyclic,Analysis, Fourier,Cyclic Analysis,Analyses, Cyclic,Cyclic Analyses,Series, Fourier,Transform, Fourier
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D019895 Transposases Enzymes that recombine DNA segments by a process which involves the formation of a synapse between two DNA helices, the cleavage of single strands from each DNA helix and the ligation of a DNA strand from one DNA helix to the other. The resulting DNA structure is called a Holliday junction which can be resolved by DNA REPLICATION or by HOLLIDAY JUNCTION RESOLVASES. Transposase

Related Publications

Goryshin IYu, and Y V Kil, and W S Reznikoff
September 1989, Journal of bacteriology,
Goryshin IYu, and Y V Kil, and W S Reznikoff
June 2014, Soft matter,
Goryshin IYu, and Y V Kil, and W S Reznikoff
February 2005, Proceedings of the National Academy of Sciences of the United States of America,
Goryshin IYu, and Y V Kil, and W S Reznikoff
March 1999, Proceedings of the National Academy of Sciences of the United States of America,
Goryshin IYu, and Y V Kil, and W S Reznikoff
January 1985, Gene,
Goryshin IYu, and Y V Kil, and W S Reznikoff
January 2008, Physical review letters,
Goryshin IYu, and Y V Kil, and W S Reznikoff
June 2004, U.S. news & world report,
Goryshin IYu, and Y V Kil, and W S Reznikoff
February 1983, Proceedings of the National Academy of Sciences of the United States of America,
Goryshin IYu, and Y V Kil, and W S Reznikoff
January 2000, Plasmid,
Goryshin IYu, and Y V Kil, and W S Reznikoff
November 2007, The journal of physical chemistry. B,
Copied contents to your clipboard!