A pathway for the biosynthesis of straight and branched, odd- and even-length, medium-chain fatty acids in plants. 1994

A B Kroumova, and Z Xie, and G J Wagner
Agronomy Department, University of Kentucky, Lexington 40546-0091.

Pathways and enzymes of fatty acid synthase-mediated, long-even-chain (generally C16-C20) fatty acid synthesis are well studied, and general metabolism involved in short-chain (C4-C7) fatty acid biosynthesis is also understood. In contrast, mechanisms of medium-chain (C8-C14) fatty acid synthesis are unclear. Recent work suggests involvement of chain-elongation-terminating thioesterases in medium-chain fatty acid formation in oilseeds and animals. We have shown that iso- and anteiso-branched and straight, odd- and even-length, short-chain fatty acids esterified in plant-trichome-gland-produced sucrose esters are synthesized by using carbon skeletons provided by modified branched-chain amino acid metabolism/catabolism. The principal enzymes involved are those catalyzing leucine biosynthesis in all organisms and those leading to short-chain alcohols in mutant yeasts and alkyl acids in Clostridium species (products often serving as mammalian pheromones). Here we provide evidence that C10-C12 straight medium-chain and C10-C12 branched medium-chain acyl acids of tomato, C6-C8 straight-chain acyl acids of Petunia, and C6 and C8 branched acyl acids of Nicotiana glutinosa are formed by alpha-ketoacid elongation without participation of fatty acid synthase-mediated reactions or -independent thioesterases. This different metabolism suggests greater integration of amino acid and fatty acid metabolism than previously considered and provides other avenues to study and manipulate not only straight even-length but also odd- and even-length straight and branched medium-chain fatty acid biosynthesis.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D000105 Acetyl Coenzyme A Acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent. Acetyl CoA,Acetyl-CoA,CoA, Acetyl,Coenzyme A, Acetyl

Related Publications

A B Kroumova, and Z Xie, and G J Wagner
February 1967, The American journal of physiology,
A B Kroumova, and Z Xie, and G J Wagner
January 2000, Plant physiology,
A B Kroumova, and Z Xie, and G J Wagner
September 2018, Metabolic engineering,
A B Kroumova, and Z Xie, and G J Wagner
October 2014, Applied microbiology and biotechnology,
A B Kroumova, and Z Xie, and G J Wagner
November 1969, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Copied contents to your clipboard!