The PCL2 (ORFD)-PHO85 cyclin-dependent kinase complex: a cell cycle regulator in yeast. 1994

V Measday, and L Moore, and J Ogas, and M Tyers, and B Andrews
Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada.

Cyclin-dependent kinase (cdk) complexes are essential activators of cell cycle progression in all eukaryotes. In contrast to mammalian cells, in which multiple cdk's contribute to cell cycle regulation, the yeast cell cycle is largely controlled by the activity of a single cdk, CDC28. Analysis of the putative G1 cyclin PCL2 (ORFD) identified a second cyclin-cdk complex that contributes to cell cycle progression in yeast. PCL2 interacted with the cdk PHO85 in vivo and in vitro and formed a kinase complex that had G1-periodic activity. Under genetic conditions in which the Start transition was compromised, PHO85 and its associated cyclin subunits were essential for cell cycle commitment. Because PHO85 and another cyclin-like molecule, PHO80, also take part in inorganic phosphate metabolism, this cdk enzyme may integrate responses to nutritional conditions with the cell cycle.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D016193 G1 Phase The period of the CELL CYCLE preceding DNA REPLICATION in S PHASE. Subphases of G1 include "competence" (to respond to growth factors), G1a (entry into G1), G1b (progression), and G1c (assembly). Progression through the G1 subphases is effected by limiting growth factors, nutrients, or inhibitors. First Gap Phase,G1a Phase,G1b Phase,Gap Phase 1,First Gap Phases,G1 Phases,G1a Phases,G1b Phases,Gap Phase, First,Gap Phases, First,Phase 1, Gap,Phase, First Gap,Phase, G1,Phase, G1a,Phase, G1b,Phases, First Gap,Phases, G1,Phases, G1a,Phases, G1b
D016213 Cyclins A large family of regulatory proteins that function as accessory subunits to a variety of CYCLIN-DEPENDENT KINASES. They generally function as ENZYME ACTIVATORS that drive the CELL CYCLE through transitions between phases. A subset of cyclins may also function as transcriptional regulators. Cyclin

Related Publications

V Measday, and L Moore, and J Ogas, and M Tyers, and B Andrews
October 2007, Molecular microbiology,
V Measday, and L Moore, and J Ogas, and M Tyers, and B Andrews
October 1995, Molecular and cellular biology,
V Measday, and L Moore, and J Ogas, and M Tyers, and B Andrews
November 1994, Science (New York, N.Y.),
V Measday, and L Moore, and J Ogas, and M Tyers, and B Andrews
December 1998, Current biology : CB,
V Measday, and L Moore, and J Ogas, and M Tyers, and B Andrews
November 2023, British journal of cancer,
V Measday, and L Moore, and J Ogas, and M Tyers, and B Andrews
November 1999, Genes to cells : devoted to molecular & cellular mechanisms,
V Measday, and L Moore, and J Ogas, and M Tyers, and B Andrews
February 2001, Yeast (Chichester, England),
V Measday, and L Moore, and J Ogas, and M Tyers, and B Andrews
November 1999, The Journal of biological chemistry,
V Measday, and L Moore, and J Ogas, and M Tyers, and B Andrews
January 2000, Progress in cell cycle research,
V Measday, and L Moore, and J Ogas, and M Tyers, and B Andrews
December 1999, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!