Role of apoptosis in mediating phosphoramide mustard-induced rat embryo malformations in vitro. 1994

B Chen, and D G Cyr, and B F Hales
Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.

Phosphoramide mustard, an active metabolite of the anticancer drug cyclophosphamide, causes malformations in rat embryos undergoing organogenesis in vitro. The purpose of the present study was to investigate the hypothesis that apoptosis plays an important role in mediating the teratogenicity of phosphoramide mustard. Apoptosis is a process of active or programmed cell death which is characterized by internucleosomal DNA fragmentation and de novo RNA and protein synthesis. Sulphated glycoprotein-2 (SGP-2) or clusterin is induced in some models of apoptosis and is one of the proteins likely to be involved in the maintenance of cell integrity. In the present study, day 10 rat embryos were cultured for 6, 12, 24, and 45 hr, with or without the addition of 10 microM phosphoramide mustard. After culture for 24 or 45 hr with exposure to 10 microM phosphoramide mustard, the embryos were both growth-retarded and malformed. Exposure to phosphoramide mustard for 6 or 12 hr did not significantly alter the relative amounts of either the mRNA or protein for SGP-2; this treatment also had no effect on DNA fragmentation in embryos or their yolk sacs. After 24 hr in culture, the relative amounts of SGP-2 protein, but not mRNA, were increased 2-fold in the yolk sacs of the phosphoramide mustard-exposed embryos, but not in the embryos themselves. At this time, DNA fragmentation was detected in phosphoramide mustard-exposed embryos, but not in their yolk sacs or in control embryos. After 45 hr in culture, SGP-2 protein and mRNA levels were increased 2-4-fold above the controls in the phosphoramide mustard-exposed embryos and their yolk sacs. Immunohistochemical analysis revealed that in control embryos cultured for 45 hr, the SGP-2 reaction product was localized in the heart, hindgut, and yolk sac. In contrast, in phosphoramide mustard-treated embryos cultured for 45 hr, SGP-2 immunostaining was found throughout the embryo, with a strong immunoreaction in the mesenchyme and ectoplacental cone. DNA fragmentation in the embryos exposed to phosphoramide mustard for 45 hr was more extensive than that found after 24 hr, but fragmentation was still not detected in the yolk sac. Thus exposure in vitro to a teratogenic concentration of phosphoramide mustard resulted in DNA fragmentation and an increased expression of SGP-2 in the embryo. These data suggest that apoptosis is involved in mediating the teratogenicity of phosphoramide mustard.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D010752 Phosphoramide Mustards A group of nitrogen mustard compounds which are substituted with a phosphoramide group or its derivatives. They are usually cytotoxic and used as antineoplastic agents. Mustards, Phosphoramide
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D000014 Abnormalities, Drug-Induced Congenital abnormalities caused by medicinal substances or drugs of abuse given to or taken by the mother, or to which she is inadvertently exposed during the manufacture of such substances. The concept excludes abnormalities resulting from exposure to non-medicinal chemicals in the environment. Drug-Induced Abnormalities,Abnormalities, Drug Induced,Abnormality, Drug-Induced,Drug Induced Abnormalities,Drug-Induced Abnormality
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015017 Yolk Sac The first of four extra-embryonic membranes to form during EMBRYOGENESIS. In REPTILES and BIRDS, it arises from endoderm and mesoderm to incorporate the EGG YOLK into the DIGESTIVE TRACT for nourishing the embryo. In placental MAMMALS, its nutritional function is vestigial; however, it is the source of INTESTINAL MUCOSA; BLOOD CELLS; and GERM CELLS. It is sometimes called the vitelline sac, which should not be confused with the VITELLINE MEMBRANE of the egg. Vitelline Sac of Embryo,Embryo Vitelline Sac,Embryo Vitelline Sacs,Sac, Yolk,Sacs, Yolk,Yolk Sacs
D015151 Immunoblotting Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies. Dot Immunoblotting,Electroimmunoblotting,Immunoelectroblotting,Reverse Immunoblotting,Immunoblotting, Dot,Immunoblotting, Reverse,Dot Immunoblottings,Electroimmunoblottings,Immunoblottings,Immunoblottings, Dot,Immunoblottings, Reverse,Immunoelectroblottings,Reverse Immunoblottings

Related Publications

B Chen, and D G Cyr, and B F Hales
January 2005, Toxicology mechanisms and methods,
B Chen, and D G Cyr, and B F Hales
February 2009, Toxicology mechanisms and methods,
B Chen, and D G Cyr, and B F Hales
August 1982, Cancer treatment reports,
B Chen, and D G Cyr, and B F Hales
March 1998, Wei sheng yan jiu = Journal of hygiene research,
B Chen, and D G Cyr, and B F Hales
January 1966, Annual report of the Research Institute of Environmental Medicine, Nagoya University,
B Chen, and D G Cyr, and B F Hales
July 1999, Drug metabolism and disposition: the biological fate of chemicals,
B Chen, and D G Cyr, and B F Hales
March 1976, Cancer research,
Copied contents to your clipboard!