Physiologically based pharmacokinetics of 2-butoxyethanol and its major metabolite, 2-butoxyacetic acid, in rats and humans. 1994

R A Corley, and G A Bormett, and B I Ghanayem
Toxicology Research Laboratory, Dow Chemical Company, Midland, Michigan 48674.

A physiologically based pharmacokinetic model was developed to describe the disposition of 2-butoxyethanol (CAS 111-76-2) and its major metabolite, 2-butoxyacetic acid, in rats and humans. A previous human inhalation model by Johanson (Toxicol. Lett. 34, 23 (1986)) was expanded to include additional routes of exposure, physiological descriptions for rats, competing pathways for metabolism of 2-butoxyethanol, and measured partition coefficients for 2-butoxyethanol and 2-butoxyacetic acid. Simulations were compared to data gathered from rats following either intravenous infusion or oral or inhalation exposure and from humans following either inhalation or dermal exposure to 2-butoxyethanol. It was necessary to add equations for both protein binding of 2-butoxyacetic acid in blood and saturable elimination of 2-butoxyacetic acid by the kidneys to consistently describe the data. While the model predicted that rats metabolize 2-butoxyethanol and eliminate the acid metabolite faster per kilogram body weight than humans, the balance of these two processes in addition to physiological differences between species resulted in higher predicted peak blood concentrations as well as total areas under the blood concentration time curves for 2-butoxyacetic acid for rats versus humans. These species differences in kinetics coupled with the fact that human blood is significantly less susceptible than rat blood to the hemolytic effects of 2-butoxyacetic acid indicate that there is considerably less risk for hemolysis in humans as a result of exposure to 2-butoxyethanol than would have been predicted solely from standard toxicity studies with rats.

UI MeSH Term Description Entries
D007262 Infusions, Intravenous The long-term (minutes to hours) administration of a fluid into the vein through venipuncture, either by letting the fluid flow by gravity or by pumping it. Drip Infusions,Intravenous Drip,Intravenous Infusions,Drip Infusion,Drip, Intravenous,Infusion, Drip,Infusion, Intravenous,Infusions, Drip,Intravenous Infusion
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D005026 Ethylene Glycols An ethylene compound with two hydroxy groups (-OH) located on adjacent carbons. They are viscous and colorless liquids. Some are used as anesthetics or hypnotics. However, the class is best known for their use as a coolant or antifreeze. Dihydroxyethanes,Ethanediols,Glycols, Ethylene
D006016 Glycolates Derivatives of ACETIC ACID which contain an hydroxy group attached to the methyl carbon. 2-Hydroxyacetates,Glycolate Ethers,Hydroxyacetate Ethers,Hydroxyacetates,Hydroxyacetic Acids,2 Hydroxyacetates,Acids, Hydroxyacetic,Ethers, Glycolate,Ethers, Hydroxyacetate

Related Publications

R A Corley, and G A Bormett, and B I Ghanayem
December 1998, Toxicology and applied pharmacology,
R A Corley, and G A Bormett, and B I Ghanayem
October 1997, Fundamental and applied toxicology : official journal of the Society of Toxicology,
R A Corley, and G A Bormett, and B I Ghanayem
January 1994, Archives of toxicology,
R A Corley, and G A Bormett, and B I Ghanayem
May 1978, Acta pharmacologica et toxicologica,
R A Corley, and G A Bormett, and B I Ghanayem
May 2005, Toxicological sciences : an official journal of the Society of Toxicology,
R A Corley, and G A Bormett, and B I Ghanayem
January 1991, Archives of toxicology,
R A Corley, and G A Bormett, and B I Ghanayem
January 1993, International archives of occupational and environmental health,
Copied contents to your clipboard!