Activation of intragraft endothelial and mononuclear cells during discordant xenograft rejection. 1994

M L Blakely, and W J Van der Werf, and M C Berndt, and A P Dalmasso, and F H Bach, and W W Hancock
Sandoz Center for Immunobiology, Harvard Medical School, New England Deaconess Hospital, Boston, Massachusetts 02215.

Most studies of discordant xenograft rejection have focused on the roles of recipient xenoreactive antibody and complement as mediators of hyperacute rejection; there are essentially no data from in vivo studies as to the contribution of endothelial cell responses to the pathobiology of xenograft rejection. We hypothesized that the mechanism by which xenoreactive natural antibodies and complement of the recipient are involved in rejection of a discordant, immediately vascularized xenograft involves donor organ endothelial cell activation, with the consequences of such activation contributing significantly to the rejection process. We performed a kinetic analysis of rejection of guinea pig hearts by untreated Lewis rats or recipients depleted of complement activity that underwent delayed xenograft rejection. We report that in both hyperacute rejection and delayed xenograft rejection there is widespread evidence of endothelial cell activation, including expression of P-selectin and E-selectin, upregulation of tissue factor, and downregulation of thrombomodulin and antithrombin III expression. Many of these changes occur very early posttransplantation in grafts that are not completely rejected until approximately 3 days. In delayed xenograft rejection, an intense cellular infiltrate is seen that results from progressive accumulation of activated macrophages and natural killer cells. T cell receptor alpha/beta+T cells are present only at relatively low levels. This cellular infiltrate is associated with dense expression of pro-inflammatory cytokines, including interferon gamma, interleukin 1, and tumor necrosis factor-alpha. We conclude that both endothelial cell activation and infiltration by activated macrophages and natural killer cells may play an important role in xenograft rejection. These newly described features of the xenogeneic rejection response may require targeting by future therapeutic regimens aimed at prolonging xenograft survival.

UI MeSH Term Description Entries
D007963 Leukocytes, Mononuclear Mature LYMPHOCYTES and MONOCYTES transported by the blood to the body's extravascular space. They are morphologically distinguishable from mature granulocytic leukocytes by their large, non-lobed nuclei and lack of coarse, heavily stained cytoplasmic granules. Mononuclear Leukocyte,Mononuclear Leukocytes,PBMC Peripheral Blood Mononuclear Cells,Peripheral Blood Human Mononuclear Cells,Peripheral Blood Mononuclear Cell,Peripheral Blood Mononuclear Cells,Leukocyte, Mononuclear
D008262 Macrophage Activation The process of altering the morphology and functional activity of macrophages so that they become avidly phagocytic. It is initiated by lymphokines, such as the macrophage activation factor (MAF) and the macrophage migration-inhibitory factor (MMIF), immune complexes, C3b, and various peptides, polysaccharides, and immunologic adjuvants. Activation, Macrophage,Activations, Macrophage,Macrophage Activations
D008297 Male Males
D011917 Rats, Inbred Lew An inbred strain of rat that is used in BIOMEDICAL RESEARCH. Rats, Inbred Lewis,Rats, Lew,Inbred Lew Rat,Inbred Lew Rats,Inbred Lewis Rats,Lew Rat,Lew Rat, Inbred,Lew Rats,Lew Rats, Inbred,Lewis Rats, Inbred,Rat, Inbred Lew,Rat, Lew
D003167 Complement Activation The sequential activation of serum COMPLEMENT PROTEINS to create the COMPLEMENT MEMBRANE ATTACK COMPLEX. Factors initiating complement activation include ANTIGEN-ANTIBODY COMPLEXES, microbial ANTIGENS, or cell surface POLYSACCHARIDES. Activation, Complement,Activations, Complement,Complement Activations
D004546 Elapid Venoms Venoms from snakes of the family Elapidae, including cobras, kraits, mambas, coral, tiger, and Australian snakes. The venoms contain polypeptide toxins of various kinds, cytolytic, hemolytic, and neurotoxic factors, but fewer enzymes than viper or crotalid venoms. Many of the toxins have been characterized. Cobra Venoms,Elapidae Venom,Elapidae Venoms,Naja Venoms,Cobra Venom,Elapid Venom,Hydrophid Venom,Hydrophid Venoms,King Cobra Venom,Naja Venom,Ophiophagus hannah Venom,Sea Snake Venom,Sea Snake Venoms,Venom, Cobra,Venom, Elapid,Venom, Elapidae,Venom, Hydrophid,Venom, King Cobra,Venom, Naja,Venom, Ophiophagus hannah,Venom, Sea Snake,Venoms, Cobra,Venoms, Elapid,Venoms, Elapidae,Venoms, Hydrophid,Venoms, Naja,Venoms, Sea Snake
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006084 Graft Rejection An immune response with both cellular and humoral components, directed against an allogeneic transplant, whose tissue antigens are not compatible with those of the recipient. Transplant Rejection,Rejection, Transplant,Transplantation Rejection,Graft Rejections,Rejection, Graft,Rejection, Transplantation,Rejections, Graft,Rejections, Transplant,Rejections, Transplantation,Transplant Rejections,Transplantation Rejections
D006085 Graft Survival The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host. Graft Survivals,Survival, Graft,Survivals, Graft
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea

Related Publications

M L Blakely, and W J Van der Werf, and M C Berndt, and A P Dalmasso, and F H Bach, and W W Hancock
April 1992, Transplantation proceedings,
M L Blakely, and W J Van der Werf, and M C Berndt, and A P Dalmasso, and F H Bach, and W W Hancock
February 1995, Transplantation proceedings,
M L Blakely, and W J Van der Werf, and M C Berndt, and A P Dalmasso, and F H Bach, and W W Hancock
February 1989, Transplantation proceedings,
M L Blakely, and W J Van der Werf, and M C Berndt, and A P Dalmasso, and F H Bach, and W W Hancock
December 1988, Transplantation,
M L Blakely, and W J Van der Werf, and M C Berndt, and A P Dalmasso, and F H Bach, and W W Hancock
March 1995, Journal of immunology (Baltimore, Md. : 1950),
M L Blakely, and W J Van der Werf, and M C Berndt, and A P Dalmasso, and F H Bach, and W W Hancock
December 1999, Transplantation,
M L Blakely, and W J Van der Werf, and M C Berndt, and A P Dalmasso, and F H Bach, and W W Hancock
January 1992, Transplantation,
M L Blakely, and W J Van der Werf, and M C Berndt, and A P Dalmasso, and F H Bach, and W W Hancock
June 1996, Transplantation proceedings,
M L Blakely, and W J Van der Werf, and M C Berndt, and A P Dalmasso, and F H Bach, and W W Hancock
October 1992, Transplantation,
M L Blakely, and W J Van der Werf, and M C Berndt, and A P Dalmasso, and F H Bach, and W W Hancock
February 1996, Clinical transplantation,
Copied contents to your clipboard!