Dynamic expression of alpha 1 beta 1 and alpha 2 beta 1 integrin receptors by human vascular smooth muscle cells. Alpha 2 beta 1 integrin is required for chemotaxis across type I collagen-coated membranes. 1994

M P Skinner, and E W Raines, and R Ross
Department of Pathology, University of Washington School of Medicine, Seattle 98195.

Vascular smooth muscle cells (SMCs) in the media of normal arteries express alpha 1 beta 1 integrin with no detectable alpha 2 beta 1 as determined by immunocytochemistry. In contrast, immunoprecipitation of integrins expressed by human SMCs cultured from medial explants shows strong expression of alpha 2 beta 1 and no expression of alpha 1 beta 1. The apparent reciprocal expression of these two collagen and laminin receptors was confirmed by flow cytometric analysis of fluorescent labeled cells. Freshly isolated SMCs had detectable alpha 1, alpha 3, alpha 5, and alpha v subunits with low levels of detectable beta 3 and no detectable alpha 2. Cultured SMCs expressed alpha 2, alpha 3, alpha 5 and alpha v subunits with little or no alpha 1 or beta 3. Neither alpha 4 nor alpha 6 were detectable in freshly isolated or cultured cells. Expression of alpha 2 beta 1 receptors by cultured SMCs appears to be required for the migration of these cells on type I collagen. Migration of cultured SMCs across a type I collagen-coated membrane toward two different chemotactic stimuli, platelet-derived growth factor-BB (1 nmol/L) and insulin-like growth factor-(1 nmol/L), was Mg2+ dependent and inhibited by preincubation of cells with an affinity-purified polyclonal anti-alpha 2 beta 1 antibody or by monoclonal antibodies directed against the individual alpha 2 or beta 1 subunits. Attachment to type 1 collagen membranes was not affected by antibodies under conditions where migration was significantly impeded. The combined data show that SMC expression of alpha 1 beta 1 and alpha 2 beta 1 integrin receptors for collagen and laminin is dynamic and reciprocal and may be important with respect to SMC migration on type I collagen. These findings are potentially important in understanding the pathophysiology of vascular diseases, for example, atherosclerosis and restenosis following balloon angioplasty, where SMC migration is a contributing factor.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D007223 Infant A child between 1 and 23 months of age. Infants
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002633 Chemotaxis The movement of cells or organisms toward or away from a substance in response to its concentration gradient. Haptotaxis

Related Publications

M P Skinner, and E W Raines, and R Ross
June 1998, Cell biochemistry and function,
M P Skinner, and E W Raines, and R Ross
January 2003, Journal of cardiovascular pharmacology,
M P Skinner, and E W Raines, and R Ross
November 2000, Hypertension research : official journal of the Japanese Society of Hypertension,
M P Skinner, and E W Raines, and R Ross
June 1995, The Journal of biological chemistry,
M P Skinner, and E W Raines, and R Ross
February 1995, Circulation research,
M P Skinner, and E W Raines, and R Ross
April 1994, The Journal of biological chemistry,
M P Skinner, and E W Raines, and R Ross
August 1991, FEBS letters,
M P Skinner, and E W Raines, and R Ross
January 1999, Journal of vascular research,
Copied contents to your clipboard!